Polarized X-rays emitted from a magnetar[†]

K. Uchiyama,^{*1,*2} R. Taverna,^{*3} R. Turolla,^{*3,*6} F. Muleri,^{*4} J. Heyl,^{*5} S. Zane,^{*6} L. Baldini,^{*7,*8}

D. González-Caniulef,^{*5} M. Bachetti,^{*9} J. Rankin,^{*4} I. Caiazzo,^{*10} N. D. Lalla,^{*11} V. Doroshenko,^{*12}

M. Errando,^{*13} E. Gau,^{*13} D. Kırmızıbayrak,^{*5} H. Krawczynski,^{*13} M. Negro,^{*14,*15} M. Ng,^{*16} N. Omodei,^{*11}

A. Possenti,^{*9} T. Tamagawa,^{*1,*2,*17} and M. C. Weisskopf^{*18} on behalf of the IXPE magnetar WG

Magnetars are neutron stars with ultra-strong magnetic fields. Magnetars exhibit steady X-ray pulsed emissions with a luminosity of approximately 10^{33} - 10^{35} erg s⁻¹, spin period P of approximately 0.1–12 s, and large spin-down rates \dot{P} of approximately 10^{-14} - 10^{-10} s s⁻¹. This translates into magnetic fields of up to B approximately 10^{15} G, assuming a conventional spin-down model. The external magnetic field of magnetars is expected to have a toroidal component that twists the field lines. Because charged particles must flow along the closed magnetic field lines to sustain the field, the star magnetosphere becomes optically-thick during resonant Compton scattering (RCS).¹⁾ Because of its strong magnetic field, magnetar X-ray emission is linearly polarized in two normal modes, namely, the ordinary (O) and extraordinary (X) modes, and upon reprocessing via RCS, X-mode photons become dominant.

4U 0142 + 61 is the brightest persistent magnetar with an unabsorbed flux of 6×10^{-11} erg s⁻¹ cm⁻² in the 2–10 keV range. Here, we report on the polarimetric observation of 4U 0142 + 61 conducted by the Imaging X-ray Polarimetry Explorer (IXPE) from January 31, 2022 to February 27, 2022 for a total onsource time of 840 ks.

Results are shown in Fig. 1 in the form of a polar plot where the polarization degree (PD) is the radial coordinate and polarization angle (PA) the azimuth. The measured PD is $15 \pm 1\%$ at low energies (2–4 keV). At 4–5 keV PD becomes consistent with zero and then increases to $35 \pm 7\%$ at 5.5–8 keV. The PA is approxi-

- *³ Department of Physics and Astronomy, University of Padova
- ^{*4} Istituto di Astrofisica e Planetologia Spaziali
- *5 Department of Physics and Astronomy, University of British Columbia
- ^{*6} Mullard Space Science Lab., University College London
- ^{*7} Dipartimento di Fisica Enrico Fermi, Università di Pisa
- *⁸ Istituto Nazionale di Fisica Nucleare, Sezione di Pisa
- *9 Osservatorio Astronomico di Cagliari, INAF
- *10 TAPIR at Caltech
- $^{\ast 11}$ Department of Physics, Stanford University
- *¹² Institut f
 ür Astronomie und Astrophysik, Universit
 ät T
 übingen
- *¹³ Physics Department and McDonnell Center for the Space Sciences, Washington University
- *¹⁴ University of Maryland, Baltimore Country
- *¹⁵ NASA Goddard Space Flight Center
- *¹⁶ Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology
- $^{\ast 17}$ RIKEN Cluster for Pioneering Research
- $^{\ast 18}$ NASA Marshall Space Flight Center

Fig. 1. Polar plot showing the energy dependence of the measured PD and PA. Contours enclose the 68.3% confidence level regions. Stars indicate the corresponding PD and PA calculated using the RCS model.

mately 50° East of North at energies below 4 keV and swings by 90°, settling at 40° West of North, above 5 keV.

The polarization pattern as a function of energy, with a minimum of PD and swing of PA by 90° at approximately 4–5 keV, suggests that the X-ray emission from 4U 0142 + 61 is characterized by two distinct components polarized in two different normal modes. The low-energy component is thought to be produced by thermal surface emission while the high-energy component by photons up-scattered in the magnetosphere. The measured polarization fraction at high energies (35% at 5.5-8 keV) is indeed compatible with the theoretical expectations of the RCS model and suggests that X-mode photons dominate. Although the measured polarization fraction at low energies (2– 4 keV) differs from the predictions of published theoretical models,²⁾ we found that the radiation emitted from a condensed³⁾ equatorial belt results in a predominance of O-mode photons with PD of approximately 15%.

In conclusion, the positive detection of polarized emission from $4U \ 0142 + 61$ by IXPE further supports the magnetar model. In particular, the distinctive energy-dependent pattern can be explained by assuming emission from the bare condensed surface reprocessed by RCS in the twisted magnetosphere.

References

- 1) C. Thompson et al., Astrophys. J. 574, 332 (2002).
- R. Taverna *et al.*, Mon. Not. R. Astron. Soc. **492**, 5057 (2020).
- A. Y. Potekhin *et al.*, Astron. Astrophys. **546**, A121 (2012).

[†] Condensed from the article in Science **378**, 646 (2022)

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Department of Physics, Tokyo University of Science