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µSR study of slightly pressurized organic superconductorκ-(ET)4Hg2.89Br8

D. P. Sari,∗1,∗2 Y. Ishii,∗1 I. Watanabe,∗2 and H. Taniguchi∗3

Organic superconductors are single-band system, sim-
ilar to high-critical-temperature (high-Tc) cuprates su-
perconductors. A distinct difference can be observed in
their lattice, i.e., squared cuprates and triangular or-
ganics. In the case of squared cuprates, the Mott insu-
lating state has an antiferromagnetic (AF) ground state
in the 1/2-filled band case, while the anisotropic trian-
gular (t = t′) organics also exhibit AF state. Here, t
and t′ are the nearest and next nearest transfer inte-
gral between sites, respectively. For a triangular lattice
Mott insulator, owing to geometrical frustration (t ∼ t′),
the system cannot be magnetically ordered down to the
mili-Kelvin order, i.e., a spin liquid state. Owing to hole
doping, it should also become metallic and supercon-
ducting (SC). However, the realistic candidate material
was limited until the discovery of hole-doped organic su-
perconductor κ-(ET)4Hg2.89Br8 (κ-HgBr). In metallic
state, resistivity exhibits the linear-temperature depen-
dence, ρ ∝ T , which is not a Fermi-liquid behavior. The
susceptibility from 300 to 2 K is nearly perfectly scaled
to that of a non-doped spin liquid organic insulator κ-
(ET)2Cu(CN)3.1) By pressure, this non-Fermi-liquid be-
havior turns into conventional Fermi-liquid behavior at
the Pc = 0.5 GPa, where Tc is also the highest (∼7 K)
in the pressure-temperature phase diagram.2) The non-
Fermi-liquid behavior at low-pressure region is similar
to the metallic state of high-Tc cuprates or low-pressure
range of multi-band heavy fermion CeCoIn5, and it is
referred to as a strange metallic region.1,2) Because κ-
HgBr exhibits similarities with other strongly correlated
electron systems, it is interesting to determine the type
of Cooper pairing that occurs in κ-HgBr.

We aim to determine the pairing symmetry in κ-
HgBr by µSR. We performed µSR measurement down
to 0.3 K on the ARGUS spectrometer at the RIKEN-
RAL muon facility with HELIOX cryostat and fly-path
setup. We developed a technique for applying a de-
cent pressure on κ-HgBr crystals because at ambient
pressure, the SC state of κ-HgBr is not bulky due to
the inhomogeneous state.3) Approximately 130 mg crys-
tals were carefully aligned and stuck together using di-
luted polymer glue. This strategy was effective for ap-
plying enough pressure on the sample as we conducted
magnetization measurement using SQUID with a simi-
lar sample setup. Figures 1(a) and (b) show the result
of SQUID measurement. The demagnetization effect due
to sample shape was treated for all analyses. The tem-
perature dependence of susceptibility determined Tc =
4.6(2) K whereas the field dependence of magnetization
(MH-curve) was measured at several temperatures; the
SC volume fractions were estimated at each tempera-
ture. Consequently, the estimated SC volume fraction
at 2 K was found to be approximately 90%, as shown in
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Fig. 1. (a) Temperature dependence of SC volume fraction
measured by SQUID. (b) Temperature dependence of Hc1

measured by SQUID down to 2 K compared with µSR
measurement. (c) ZF-µSR time spectra before and after
applying TF of 40 G. The solid lines are the exponential
decay fitting lines. (d) Relaxation rate of ZF-µSR time
spectra after applying several TF, from 2 to 40 G.

Fig. 1(a). Comparing this with the referred result ob-
tained from ac-susceptibility measurement,3) a pressure
of at least 0.3 GPa was applied to the sample. This ex-
pectation was confirmed by the estimation of the lower-
critical field, Hc1, by SQUID, resulting in the absolute
value of Hc1 at 0 K, i.e., 27 Oe. The result is consistent
with the measurement performed using zero-filed (ZF)
µSR at 0.3 K. Hc1 was estimated as follows. The sam-
ple was ZF-cooled to 0.3 K. Transverse-field (TF) was
applied for approximately 10 min to destroy the shield-
ing field. After cutting off the TF, the ZF-relaxation
rate was measured. At TF = 25 Oe, the relaxation
rate started to increase. Therefore, we concluded that
the sample was in bulk condition and a slight pressure,
P ≳ 0.3 GPa, was applied. Using these results, we mea-
sured the ZF-µSR relaxation rate in κ-HgBr down to
0.3 K. The temperature independence of ZF-relaxation
rate was observed, indicating that spontaneous internal
fields do not appear in the superconducting state. This
result is consistent with that in Ref. 4), in which the mea-
surement was performed down to 1.5 K and at ambient
pressure. Thus, the possibility of spin triplet and d+ id-
wave symmetry in κ-HgBr due to the expected triangular
lattice in κ-HgBr becomes very low. The temperature
dependence of London penetration depth measurement
using TF-µSR is necessary for determining the SC gap
symmetry, which will be discussed in the future work.
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Targeted alpha therapy of cancer: Evaluation of [211At] AAMT
targeting LAT1†
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L-type amino acid transporter 1 (LAT1) is an iso-
form of the system L, which is Na+-independent neutral
amino acid transport agency. LAT1 is expressed in pri-
mary human cancers originating in various organs such
as the brain, lung, thymus, and skin, it is a well-known
specific cancer marker. Amino acid tracers containing
radioactive halogen have attracted attention for use as
probes in single photon emission computed tomography
(SPECT) and positron emission tomography (PET). L-
3-[18F]- α-methyl-tyrosine (18F-FAMT) has higher po-
tential for tumor specificity than 2-deoxy-2-[18F] fluoro-
glucose (18F-FDG), which is widely employed as a PET
probe for cancer staging. Further FDG has the poten-
tial for false-positive accumulation within inflammation
related to high glucose metabolism in macrophages or
neutrophils, whereas 18F-FAMT accumulates in tumors
via LAT1, which is expressed only in cancer cells.1) In
contrast, 18F-FAMT is not transported by other iso-
forms of the system L (e.g., LAT2, LAT3, and LAT4),
that are expressed in normal tissues.2,3) Therefore, our
L-3-[211At] - α-methyl-tyrosine (211At-AAMT) is ex-
pected to exhibit LAT1 specificity and to have the po-
tential to be used as a targeting alpha therapy (TAT)
treatment.

Methods
The 209Bi(α, 2n)211At reaction using the AVF Cy-

clotron at the Research Center for Nuclear Physics, Os-
aka University (Ibaraki, Japan) was used to produce
211At.4) Further 211At was produced with the same nu-
clear reaction at the Nishina Center for Accelerator-
Based Science, RIKEN, and it was then transported to
the Osaka University.

PANC-1 cells were cultured at 37◦C in D-MEM con-
taining 10% fetal bovine serum and 1% antibiotics in
a humidified incubator with 5% CO2. Cultured cells
were washed in PBS (-) and harvested with trypsin.
Tumor xenograft models were established by the sub-
cutaneous injection of 1× 107 cells in 0.2 mL of serum-
free medium and Matrigel (1:1) into female BALB/c-
nu/nu mice. PANC-1 xenograft mice (10 weeks old;
body weight = 19.3± 1.4 g) were used when the tumor
size reached approximately 50 mm3 on average.

The mice were divided into two groups according to
the injected dose [0.4 MBq (n = 4, 4.0± 0.2 MBq/mL);
control (n = 4)]. The control group only received sol-
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Fig. 1. Efficacy of 211At-AAMT using the PANC-1
xenograft model. Tumor growth inhibition by 211At-
AAMT (Left). Coronal images of 211At-AAMT in
tumor-bearing model (Right).

vents.
Tumor sizes and body weights were measured three

times per week. Mice were sacrificed when the tumor
size reached more than 10% of the total weight. The
mice were observed for 40 days. Uptakes were normal-
ized by the injected dose (MBq) and body weight (g).

Results
In the PANC-1 model, the control mice were in-

jected only with solvents (0.2 w/v% AcOH and 1 w/v%
ascorbic acid solution) and the 211At-AAMT treatment
group received i.v. injections of the 0.4 MBq/mouse
211At-AAMT solution. No inflammation or abnormal-
ities were observed around the injection site. In the
211At-AAMT treatment group, the tumor growth was
clearly inhibited and the body weight was not signifi-
cantly decreased compared to the control group (Fig. 1).

Conclusion
211At-AAMT may be considered a novel anti-cancer

drug. While 211At-AAMT could inhibit tumor growth
with a single treatment, the tumor was not completely
abolished, and therefore, a single injection was insuffi-
cient to decrease the tumor size continuously. Multiple
doses may be necessary to exploit the high anti-tumor
effect of 211At-AAMT. In conclusion, 211At-AAMT may
be an effective anti-cancer drug when administered mul-
tiple times or in combination with existing anti-cancer
drugs.
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