Surface localization of the dineutron in ¹¹Li[†]

Y. Kubota,^{*1,*2} A. Corsi,^{*3} G. Authelet,^{*3} H. Baba,^{*1} C. Caesar,^{*4} D. Calvet,^{*3} A. Delbart,^{*3} M. Dozono,^{*2}
J. Feng,^{*5} F. Flavigny,^{*6} J. -M. Gheller,^{*3} J. Gibelin,^{*7} A. Giganon,^{*3} A. Gillibert,^{*3} K. Hasegawa,^{*8} T. Isobe,^{*1}
Y. Kanaya,^{*9} S. Kawakami,^{*9} D. Kim,^{*14} Y. Kikuchi,^{*10,*1,*11} Y. Kiyokawa,^{*2} M. Kobayashi,^{*2} N. Kobayashi,^{*12}
T. Kobayashi,^{*8} Y. Kondo,^{*13} Z. Korkulu,^{*14,*15} S. Koyama,^{*12} V. Lapoux,^{*3} Y. Maeda,^{*9} F. M. Marqués,^{*7}
T. Motobayashi,^{*1} T. Miyazaki,^{*12} T. Nakamura,^{*13} N. Nakatsuka,^{*16} Y. Nishio,^{*17} A. Obertelli,^{*3}
K. Ogata,^{*18,*11} A. Ohkura,^{*17} N. A. Orr,^{*7} S. Ota,^{*2} H. Otsu,^{*1} T. Ozaki,^{*13} V. Panin,^{*1} S. Paschalis,^{*4}
E. C. Pollacco,^{*3} S. Reichert,^{*19} J. -Y. Roussé,^{*3} A. T. Saito,^{*13} S. Sakaguchi,^{*17} M. Sako,^{*1} C. Santamaria,^{*3}

M. Sasano,^{*1} H. Sato,^{*1} M. Shikata,^{*13} Y. Shimizu,^{*1} Y. Shindo,^{*17} L. Stuhl,^{*14,*1} T. Sumikama,^{*8} Y. L. Sun,^{*3} M. Tabata,^{*17} Y. Togano,^{*13} J. Tsubota,^{*13} Z. H. Yang,^{*1} J. Yasuda,^{*17} K. Yoneda,^{*1} J. Zenihiro,^{*1} T. Uesaka^{*1}

A unique aspect of nuclei with respect to other fermionic many-body systems is the emergence of a spatially compact two-neutron pair, *dineutron*,¹⁾ which is completely different from the Bardeen-Cooper-Schrieffer-(BCS)-like pairings that appear in momentum space. The dineutron correlation is presumed to be important for elucidating the stabilities and exotic structures of neutron drip-line nuclei, as well as the infinite nuclear matter. Studies on the dineutron formation and the density dependence of ¹¹Li are crucial because it has a halo structure: the matter density gradually varies from the saturated core to the very low-density tail where only valence neutrons exist. It allows the study of the density-dependent properties of the dineutron correlation.

The quasifree (p, pn) reaction was employed to probe the entire volume of ¹¹Li with the least effect of absorption. The measurement was performed at RIBF using the SAMURAI spectrometer, $^{2)}$ combined with the 15cm-thick liquid hydrogen target MINOS³⁾ and dedicated (p, pn) setup.

The strength of the dineutron in ¹¹Li was evaluated by using the correlation angle θ_{nf} , which is the angle between the momentum vectors of two valence neutrons. The spatially compact dineutron should have an angle larger than 90° . Figure 1 shows that the mean value of

- Condensed from the article in Phys. Rev. Lett. 125, 252501 (2020)
- *1 **RIKEN** Nishina Center
- *2 Center for Nuclear Study, University of Tokyo
- *3 Département de Physique Nucléaire, IRFU, CEA, Université Paris-Saclav
- *4 Department of Physics, Technische Universität Darmstadt
- *5 Department of Physics, Peking University
- *6 IPN Orsay, Université Paris Sud
- *7 LPC Caen, ENSICAEN, Université de Caen Normandie
- *8 Department of Physics, Tohoku University
- *9 Department of Applied Physics, University of Miyazaki
- ^{*10} Tokuyama College, National Institute of Technology
- *11Department of Physics, Osaka City University
- $^{\ast 12}$ Department of Physics, University of Tokyo
- *¹³ Department of Physics, Tokyo Institute of Technology
- $^{\ast 14}\,$ Center for Exotic Nuclear Studies, Institute for Basic Science
- *¹⁵ Institute for Nuclear Research, Hungarian Academy of Sciences
- *¹⁶ Department of Physics, Kyoto University
- *¹⁷ Department of Physics, Kyushu University
- *18 Research Center for Nuclear Physics, Osaka University
- *¹⁹ Department of Physics, Technische Universität München

Fig. 1. Mean values of the correlation angle. Black dashed line shows the expected $\langle \theta_{nf} \rangle$ value for the two uncorrelated neutrons. Inset shows a schematic of θ_{nf} in ¹¹Li.

 θ_{nf} clearly depends on the missing momentum k, which is the measure of the radial position of the two neutrons in ¹¹Li. The peak structure of $\langle \theta_{nf} \rangle$ at $k \sim 0.3 \text{ fm}^{-1}$ can be interpreted as the localization of the dineutron, which is maximized at $r \sim 3.6$ fm from the center of the ⁹Li core. The quasi-free model⁴⁾ well reproduces the experimental data.

The result implies that the dineutron correlation is prominent only around the ⁹Li core surface where the density is $10^{-3} \leq \rho/\rho_0 \leq 10^{-2}$, and it becomes weaker at the tail of the halo, where the density is extremely low. It is consistent with the Hartree-Fock-Bogoliubov calculation⁵⁾ for infinite nuclear matter. If this is a universal characteristic of the dineutron correlation, it should appear at the low-density surface of any neutron-rich nuclei. Future (p, pn) experiments should investigate the nature of the dineutron correlation in nuclei of interest, such as ${}^{6}\text{He}$, ${}^{16}\text{C}$, and ${}^{24}\text{O}$.

References

- 1) A. B. Migdal, Soviet J. Nucl. Phys. 16, 238 (1973).
- 2) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).
- 3) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- 4) Y. Kikuchi et al., Prog. Theor. Exp. Phys. 2016, 103D03 (2016).
- 5) M. Matsuo, Phys. Rev. C 73, 044309 (2006).