Experimental studies of the two-step scheme with an intense radioactive 132 Sn beam for next-generation production of very neutron-rich nuclei[†]

H. Suzuki,^{*1} K. Yoshida,^{*1} N. Fukuda,^{*1} H. Takeda,^{*1} Y. Shimizu,^{*1} D. S. Ahn,^{*1} T. Sumikama,^{*1} N. Inabe,^{*1} T. Komatsubara,^{*1} H. Sato,^{*1} Z. Korkulu,^{*1} K. Kusaka,^{*1} Y. Yanagisawa,^{*1} M. Ohtake,^{*1} H. Ueno,^{*1} T. Kubo,^{*1} S. Michimasa,^{*2} N. Kitamura,^{*2} K. Kawata,^{*2} N. Imai,^{*2} O. B. Tarasov,^{*3,*1} D. P. Bazin,^{*3,*1} J. Nolen,^{*4,*1} and W. F. Henning^{*4,*5,*1}

The usefulness of a two-step scheme with a 132 Sn beam proposed¹) for the efficient production of midheavy very-neutron-rich RIs was investigated, as an alternate method for the in-flight fission of a $^{238}\mathrm{U}$ beam (one-step scheme). The two-step scheme is a combination of an isotope-separation online (ISOL) system with a thick U target and a high-intensity proton beam as the first step, and the projectile fragmentation of reaccelerated RI beams (e.g., 132 Sn) as the second step. We measured production cross sections beyond 125 Pd, up to which the cross sections had already been measured at GSI together with the neighboring $RIs^{(2)}$ to evaluate the yields of RIs using the two-step scheme with a $^{132}\mathrm{Sn}$ beam. The 278-MeV/nucleon $^{132}\mathrm{Sn}$ beam was supplied from BigRIPS, and the very neutron-rich RIs around the neutron number N = 82 were produced in the ZeroDegree spectrometer with a 5.97-mm Be target. Yields obtained by the two-step and one-step schemes were estimated based on the measured cross sections, and we examined whether and to what extent the twostep scheme at future 1-MW beam facilities can reach further into the neutron-rich region.

Figure 1 shows the production yields of Pd isotopes obtained using the two-step scheme with a 132 Sn beam

Fig. 1. Yield comparison between the two-step scheme with a 132 Sn beam (orange circles) and the one-step in-flight fission of a 238 U beam (blue squares) for Pd isotopes.

- † Condensed from the article in Phys. Rev. C 102, 064615 (2020)
- *1 RIKÉN Nishina Center
- *2 Center for Nuclear Study, University of Tokyo
- *³ National Superconducting Cyclotron Laboratory, Michigan State University
- ^{*4} Division of Physics, Argonne National Laboratory
- *5 Physik Department, Technische Universität München

 10^{2} N_{50} 10 48 1 10^{-1} 46 10^{-2} 44 10^{-3} 42 10^{-4} 40 10^{-5} 70 80 75 65 Ν

Fig. 2. Ratios of the $Y_{2\text{step}}$ with a ¹³²Sn beam to the $Y_{1\text{step}}$. Orange and blue regions indicate that the two- and onestep schemes are more useful than the other, respectively. Dark-blue square dots represent the supernova *r*-process path.

and the one-step scheme with 1-MW beam powers. The two-step yields $(Y_{2\text{step}})$ decrease more slowly with neutron numbers than the one-step yields $(Y_{1\text{step}})$, and $Y_{2\text{step}}$ becomes larger than $Y_{1\text{step}}$ beyond ^{124}Pd . The ratio of $Y_{2\text{step}}/Y_{1\text{step}}$ around the N = 82 region is shown in Fig. 2. This ratio systematically increases, as moving away from the stability line. Thus, the two-step scheme is more favorable than the one-step scheme to yield more neutron-rich region beyond our results, especially for the region of the supernova *r*-process path. The calculated $Y_{2\text{step}}$ with a cross-section formula COFRA⁴ indicated by black lines reproduces the experimental results well.

ISOL systems can provide various RIs over the nuclear chart; thus, a wide region of very neutron-rich RI beams can be produced by the two-step scheme. By using the ISOLDE yield database³⁾ and the cross-section formula COFRA, the $Y_{2\text{step}}$ in the whole region was estimated. The $Y_{2\text{step}}$ was expected to be larger than the $Y_{1\text{step}}$ around the neutron-rich N = 50, 60, 82, and 90, including the supernova *r*-process path. The two-step scheme is considered a powerful tool to open a new window into the unknown region of mid-mass to heavy, very neutron-rich nuclei.

References

- 1) K. Helariutta et al., Eur. Phys. J. A 17, 181 (2003).
- 2) D. Pérez-Loureiro et al., Phys. Lett. B 703, 552 (2011).
- 3) ISOLDE Yield Database web page,
- http://isoyields-classic.web.cern.ch.
- 4) COFRA web page, http://www.usc.es/genp/cofra.