Empirical formulas for the standard-model parameters

Y. Akiba^{*1}

We report empirical formulas for the parameters of the standard-model. Table 1 lists the formulas for the mass of the charged leptons (e, μ, τ) , three neutrinos (ν_1, ν_2, ν_3) , six quarks (u, c, t, d, s, b), and gauge bosons (W, Z), and Higgs boson (H). The formulas yield the masses in terms of the Planck mass

$$M_{pl} = 1.220910 \pm 0.000029 \times 10^{19} \text{ GeV}.$$

The last column of the table presents the relative difference $|m_p^c/m_p^m-1|$ of the calculated value m_p^c and the measured value m_p^m for particle p. Table 2 compares

Table 1. Formulas for the masses of the SM particles.

$$\begin{array}{c|cccc} p & \text{formula} \ (\mu_p = m_p/M_{\rm pl}) & |m_p^c/m_p^m - 1| \\ \hline e & \frac{1}{12\pi^2} \epsilon_0^{1/3} \left(1 + \frac{1}{4} \frac{1}{(6\pi)^2} \right)^{-1} & 5.9 \times 10^{-6} \\ \mu & \frac{3}{2} \epsilon_0^{1/3} \left(1 - \frac{3}{6\pi} + \frac{27}{4} \frac{1}{(6\pi)^2} \right)^{-1} & 5.2 \times 10^{-5} \\ \hline \tau & 9\pi \epsilon_0^{1/3} \left(1 - \frac{3}{4} \frac{1}{6\pi} + \frac{5}{4} \frac{1}{(6\pi)^2} \right)^{-1} & 1.6 \times 10^{-5} \\ \nu_1 & \frac{2}{3} \epsilon_0^{1/2} \left(1 + \frac{1}{6\pi} \right)^{-1} & \text{See Table 2} \\ \nu_2 & 2\epsilon_0^{1/2} \left(1 - \frac{1}{6\pi} \right)^{-1} & \text{See Table 2} \\ \nu_3 & 4\pi \epsilon_0^{1/2} \left(1 + \frac{1}{6\pi} \right)^{-1} & \text{See Table 2} \\ u & 8(6\pi)^2 \epsilon_0^{1/3} & 5.5 \times 10^{-3} \\ c & 12\epsilon_0^{1/3} & 3.8 \times 10^{-2} \\ u & 8(6\pi)^{-2} \epsilon_0^{1/3} & 3.9 \times 10^{-3} \\ b & 3(6\pi) \epsilon_0^{1/3} \left(1 + \frac{3}{2} \frac{1}{6\pi} + \frac{27}{4} \frac{1}{(6\pi)^2} \right)^{-1} & 5.6 \times 10^{-3} \\ s & \epsilon_0^{1/3} & 2.2 \times 10^{-2} \\ d & (6\pi)^{-1} \epsilon_0^{1/3} \left(1 + \frac{1}{12} \frac{1}{6\pi} \right)^{-1} & 1.6 \times 10^{-2} \\ \hline Z & \frac{1}{(8\pi^2)} \epsilon_0^{1/4} \left(1 + \frac{1}{12} \frac{1}{6\pi} + \frac{1}{12} \frac{1}{(6\pi)^2} \right)^{-1/2} & 1.5 \times 10^{-5} \\ W & \frac{2^{-1/4}}{(8\pi^2} \epsilon_0^{1/4} \left(1 - \frac{3}{2} \frac{1}{6\pi} - \frac{9}{4} \frac{1}{(6\pi)^2} \right)^{-1/2} & 3.4 \times 10^{-4} \\ H & \frac{2^{1/2}}{8\pi^2} \epsilon_0^{1/4} \left(1 + \frac{3}{2} \frac{1}{6\pi} - \frac{9}{2} \frac{1}{(6\pi)^2} \right)^{-1/2} & 3.4 \times 10^{-4} \end{array}$$

Table 2. Comparison of the calculated masses of neutrinoswith the neutrino oscillation data.

Quantity	Calculated	Measured
- 1	$7.39 \times 10^{-5} \text{ eV}^2$	$7.37^{+0.20}_{-0.15} \times 10^{-5} \text{ eV}^2$
$m_3^2 - m_1^2$	$2.58 \times 10^{-3} \text{ eV}^2$	$2.56 \pm 0.04 \times 10^{-3} \text{ eV}^2$

*1 RIKEN Nishina Center

the mass values from the formulas and neutrino oscillation data. Table 3 lists the formulas for the Cabibbo-Kobayashi-Maskawa quark mixing parameters. Table 4 lists the formulas for the neutrino-mixing angles. Table 5 lists the formulas for the fine structure constant α and the strong coupling constant α_s . These formulas yield 24 of 25 free parameters of the standardmodel. The remaining one, the neutrino CP violation angle δ_{CP} , has not been measured. The values calculated from the formulas are in good agreement with the data. The one common constant in the mass formulas, $\epsilon_0 = 2 \times (6\pi)^{-48}$, which agrees with the Hubble constant H_0 times the Planck time $t_{\rm pl} \ (\epsilon_0 \simeq H_0 \times t_{\rm pl})$ within the accuracy of H_0 , suggests that the particle masses are related to the expansion of the universe. A model to explain these formulae is reported in the next article,¹⁾ and implications to gravity and cosmology are reported in the article appearing after that.²⁾

Table 3. Formulas of the CKM matrix elements.

	formula	calculated	measured
V_{us}	$\left(\frac{1}{6\pi}\left(1\!+\!\frac{1}{6\pi}\right)^{-1}\right)^{1/2}$	0.22445	0.22452 ± 0.0044
V_{cb}	$\left(\frac{2}{3}\right)^{1/2} \frac{1}{6\pi}$	0.04332	0.04214 ± 0.00076
V_{ub}	$\frac{4}{3}\frac{1}{(6\pi)^2}$	0.003753	0.00365 ± 0.00012
$\bar{\eta}$	$\left(1 + \frac{3}{2}\frac{1}{6\pi} + \frac{27}{4}\frac{1}{(6\pi)^2}\right)\frac{1}{\pi}$	0.3497	$0.355\substack{+0.012\\-0.011}$

Table 4. Formulas of the neutrino-mixing matrix.

formula	calculated	d measured
$s_{12} \left(\frac{1}{3}\left(1-\frac{1}{6\pi}\right)\left(1+\frac{1}{6\pi}\right)^{-1}\right)^{1/2}$	0.547	0.545 ± 0.016
$s_{23}\left(\frac{3}{2\pi}\left(1+\frac{1}{6\pi}\right)\left(1-\frac{1}{6\pi}\right)^{-1}\right)^{1/2}$	0.729	0.714 ± 0.053
$\frac{s_{13}\left(\frac{1}{12\pi}\right)^{1/2}\left(1-\frac{1}{6\pi}\right)\left(1+\frac{1}{6\pi}\right)^{-1}}{2}$	0.146	0.147 ± 0.003

Table 5. Formulas of the coupling constants α and $\alpha_s(M_Z)$

	formula	calculated	rel. error
α^{-1}	$44\pi \left(1+\frac{1}{3}\frac{1}{6\pi}\right)^{-1/2}$	137.0238	8.9×10^{-5}
$\alpha_s(M_Z)$	$\frac{\sqrt{2}}{4\pi} \left(1 + \frac{1}{6\pi} \right)$	0.11851	3.5×10^{-3}

References

1) Y. Akiba, in this report.

2) Y. Akiba, in this report.