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Study of Lorentzian sine-square deformed CFT†

X. Liu∗1,∗2 and T. Tada∗2,∗3

The concept of sine-square deformation (SSD) was
first introduced into two-dimensional conformal field
theory (2D CFT) in Ref. 1). In previous studies, we
found that the introduction of SSD in 2D CFT de-
fines a new time translation generated by the SSD
Hamiltonian.1) The SSD CFT processes the Virasoro
algebra with a continuum index.2) Further, inspired
by the discovery in SSD CFT, we generalized this
study to CFT using more general modular Hamilto-
nians, and found three different types of Virasoro al-
gebra in the Euclidean CFT.3) In this study, we extend
our analysis to Lorentzian CFT. To consider CFT in
the Minkowski spacetime, the universal covering space
of the Minkowski spacetime must be introduced. Gen-
erally, a spacetime is mapped to a Penrose diamond
on the cylinder, which is the universal covering of the
Penrose diamond. The time translation is defined on
the universal covering using the Luscher-Mack Hamil-
tonian P̂0+K̂0

2 .4) Consider the worldline for a particle in
a Penrose diamond; if we perform a special conformal
transformation, the worldline may cross the bound-
ary of the Penrose diamond and move on to the next
patch. This problem can be solved if the time trans-
lation for the CFT is defined to be confined in a sin-
gle Penrose diamond, implying that the CFT becomes
effectively non-compact under such time translations.
This can be achieved by applying SSD in Lorentzian
CFT; the non-compactness of CFT can be observed
from the continuum index of the Virasoro Algebra.5)
We performed similar analysis as that in the Euclidean
signature.2,3) Next, we investigate the three different
cases with Hamiltonians having plus, minus, and zero
values in the quadratic Casimir element. We select
three examples from the three cases:

• The Luscher Mack Hamiltonian P̂0+K̂0

2 ,
• The Rindler Hamiltonian M̂01,
• The Naive Hamiltonian P̂0.

We define different mode decompositions of the
energy-stress tensor with 0th modes corresponding to
each Hamiltonian in the three cases. By applying the
commutation relation of the energy-stress tensor, we
can obtain three types of Virasoro Algebra:

• Luscher Mack type: The Virasoro generators in
this type must bear discrete indices; otherwise,
ambiguities are observed in the generators.

• Rindler type: The Virasoro generators in this type
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Fig. 1. The universal covering space of the Penrose dia-
mond (shaded region) is charted by u+ and u−. While
the conformal symmetry is represented using the entire
covering space, the time flow by P0 (arrowed line) is
confined within a single Penrose diamond.

must bear discrete indices to remove the ambigu-
ities and preserve the local conformal symmetry.
There is UV divergence in the central extensional
term in the Virasoro Algebra.

• The Naive type: The Virasoro generators can have
continuum indices. This corresponds to the SSD
case, where the theory is effectively non-compact.
Thus, the time translation is confined inside a sin-
gle Penrose diagram. See Fig. 1.

The conformal invariance requires the introduction
of the universal covering space; moreover, occasionally,
the Lorentzian CFT is considered to be unphysical ow-
ing to the existence of a closed time-like curve. In this
study, our analysis ensured that there is no closed time-
like curve if the Naive Hamiltonian is selected instead
of the Luscher-Mack Hamiltonian.5)
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Empirical formulas for the standard-model parameters

Y. Akiba∗1

We report empirical formulas for the parameters of
the standard-model. Table 1 lists the formulas for the
mass of the charged leptons (e, µ, τ), three neutrinos
(ν1, ν2, ν3), six quarks (u, c, t, d, s, b), and gauge bosons
(W , Z), and Higgs boson (H). The formulas yield the
masses in terms of the Planck mass

Mpl = 1.220910± 0.000029× 1019 GeV.

The last column of the table presents the relative dif-
ference |mc

p/m
m
p −1| of the calculated value mc

p and the
measured value mm

p for particle p. Table 2 compares

Table 1. Formulas for the masses of the SM particles.
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Table 2. Comparison of the calculated masses of neutrinos

with the neutrino oscillation data.

Quantity Calculated Measured

m2
2 −m2

1 7.39× 10−5 eV2 7.37+0.20
−0.15 × 10−5 eV2

m2
3 −m2

1 2.58× 10−3 eV2 2.56± 0.04× 10−3 eV2
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the mass values from the formulas and neutrino oscil-
lation data. Table 3 lists the formulas for the Cabibbo-
Kobayashi-Maskawa quark mixing parameters. Ta-
ble 4 lists the formulas for the neutrino-mixing angles.
Table 5 lists the formulas for the fine structure con-
stant α and the strong coupling constant αs. These
formulas yield 24 of 25 free parameters of the standard-
model. The remaining one, the neutrino CP violation
angle δCP , has not been measured. The values calcu-
lated from the formulas are in good agreement with
the data. The one common constant in the mass for-
mulas, ϵ0 = 2× (6π)−48, which agrees with the Hubble
constant H0 times the Planck time tpl (ϵ0 ≃ H0 × tpl)
within the accuracy of H0, suggests that the particle
masses are related to the expansion of the universe.
A model to explain these formulae is reported in the
next article,1) and implications to gravity and cosmol-
ogy are reported in the article appearing after that.2)

Table 3. Formulas of the CKM matrix elements.

formula calculated measured
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Table 4. Formulas of the neutrino-mixing matrix.

formula calculated measured
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Table 5. Formulas of the coupling constants α and αs(MZ)

formula calculated rel. error
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