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Non-relativistic expansion of Dirac equation by the reconstituted
Foldy-Wouthuysen transformation†

Y. X. Guo∗1,∗2 and H. Z. Liang∗2,∗1

In the past few decades, the density functional theory
(DFT) has been successfully applied in both the non-
relativistic and relativistic frameworks to describe the
ground-state and excited-state properties of thousands
of nuclei in a microscopic and self-consistent manner.
However, the connection between these two frameworks
remains unclear. The non-relativistic expansion of the
Dirac equation is considered to be a potential bridge
connecting these two frameworks.1,2)

Recently, the reconstituted similarity renormaliza-
tion group (SRG) method was proposed.3) Compared to
conventional methods, the reconstituted SRG method
not only showed a much faster convergence, but also
yielded single-particle densities ρv(r) = ψ†(r)ψ(r) that
are closer to the exact values. Moreover, for the single-
particle scalar densities ρs(r) = ψ†(r)γ0ψ(r), the γ0
matrix should be transformed in the same manner as
the Dirac Hamiltonian. However, the original Dirac
Hamiltonian is operated with infinite steps of unitary
transformations in both the conventional and recon-
stituted SRG methods. Therefore, the calculations of
single-particle scalar densities are not trivial in SRG
methods.

Meanwhile, with the consideration of the strong
scalar potential, we further applied another well-known
technique, the Foldy-Wouthuysen (FW) transforma-
tion, to the general cases in the covariant DFT and
performed the corresponding expansion up to the 1/M4

order.4) With the present FW transformation, all the
unitary transformations involved hold explicit forms.
On this basis and with inspiration from the reconsti-
tuted SRG method, we developed the reconstituted FW
transformation. By replacing the bare mass M with the
Dirac mass M∗ and defining the corresponding new op-
erators, the contributions related to the higher powers
of the quotient of the scalar potential and the bare mass
are absorbed into the lower orders.

As a step forward, the so-called picture-change er-
ror,5,6) i.e., the difference between the densities calcu-
lated in the Schrödinger picture and those obtained in
the Dirac picture, has also been investigated through
calculations starting from basic field operators. After
considering such picture-change errors, i.e., the rela-
tivistic corrections, both the single-particle vector and
scalar densities become much closer to the exact results.
In addition, the difference between ρv and ρs originates
from the 1/M∗2 order, as does the relativistic correc-
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Fig. 1. Difference between the single-particle density and
the single-particle scalar density for the neutron 2d5/2
state of nucleus 208Pb.

tion ∆ρ. Therefore, the relativistic corrections also play
a crucial role in the difference between the vector and
scalar densities.

By taking the 2d5/2 state of 208Pb as an example, the
difference between the single-particle density and the
single-particle scalar density is shown with the black
solid line in Fig. 1. The result without any relativis-
tic correction is shown with the olive dashed line, while
the results calculated with the consideration of relativis-
tic corrections up to the 1/M∗2 and 1/M∗3 orders are
shown with the blue dotted and red dash-dotted lines,
respectively. It can be seen from Fig. 1 that the differ-
ences between the results without the relativistic cor-
rections and the exact values are systematic. There are
differences in the positions of peaks and nodes as well
as the amplitudes. In contrast, the results with the rel-
ativistic corrections remarkably reproduce the behavior
of the exact values, particularly in terms of the positions
of peaks and nodes.

Based on the above discussions, the reconstituted
FW transformation is a promising method to connect
the relativistic and non-relativistic DFTs for future
studies.
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On the role of three-particle interactions in nuclear matter†

W. Bentz∗1 and I. C. Cloët∗2

In a previous publication1) we discussed an interest-
ing relation between the skewness J of nuclear matter
(J = 27ρ3

(
d3EA/dρ

3
)
, where ρ is the baryon density

and EA the energy per nucleon in isospin symmetric
nuclear matter) and the isoscalar three-particle inter-
action parameters. In this paper, we wish to discuss
an equally interesting relation between the slope pa-
rameter L of the symmetry energy (L = 3ρdas

dρ , where
as ≃ 32 MeV is the symmetry energy) and the isovec-
tor three-particle interaction parameters.

We extend Landau’s basic formula2) for the vari-
ation of the energy density of nuclear matter to in-
clude the third order term, which involves the spin-
averaged three-particle forward scattering amplitude
h(τ1τ2τ3)(k⃗1, k⃗2, k⃗3). Here τi = (p, n), and h is symmet-
ric under simultaneous interchanges of the momentum
variables k⃗i and the isospin variables τi. Taking finally
the isospin symmetric limit, we can derive the following
relations for J and L in terms of the incompressibility
K and the symmetry energy as:
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Here pF is the Fermi momentum, M the free nucleon
mass, M∗ the Landau effective mass, ∂M∗

∂pF
refers to the

momentum dependence of M∗ at the Fermi surface,
and µ = ρ ∂

∂ρ(3)

(
∆M∗

M

)
expresses the dependence of

∆M∗ = M∗(p) −M∗(n) on the isovector density ρ(3) =
ρ(p) − ρ(n). The dimensionless isoscalar and isovector
three-particle interaction parameters

Hℓ =

(
2pFM

∗

π2
ρ

)
hℓ , H ′

ℓ =

(
2pFM

∗

π2
ρ

)
h′
ℓ

are the ℓ = 0, 1 moments of the isoscalar (hℓ =
1
4 (h

(ppp)
ℓ + 3h

(ppn)
ℓ )) and isovector (h′

ℓ = 1
4 (h

(ppp)
ℓ −

h
(ppn)
ℓ )) combinations of the 3-particle forward scat-

tering amplitude at the Fermi surface.
By using empirical information, it was shown in

Ref. 1) that the above expression for J requires a large
positive 3-particle term M

M∗ (H0 −H1) > 1.24. On the
other hand, if we use the canonical value as = 32 MeV
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Fig. 1. First two terms in the Faddeev series. Circles rep-
resent two-body t-matrices.

together with µ ≃ 0.27, which is the central value of
the empirical range µ = 0.27±0.25 reported in Ref. 3),
the sum of the first two terms in [. . . ] in the expres-
sion for L is ∼ 0.6, almost independent of M∗ within
the empirical range 0.7 < M∗/M < 1. The empiri-
cal range of the slope parameter3) L = 59 ± 16 MeV
then implies that the 3-particle term M

M∗

(
H ′

0 − 1
3H1

)
is negative, with a magnitude smaller than unity.

Theoretically the three-particle amplitudes should
be calculated from the Faddeev equation, which is il-
lustrated by Fig. 1. The driving term, which we call
the “2-particle correlation (2pc) term,” can be easily
estimated by using effective contact interactions of the
Landau-Migdal type. Restricting the calculation to s-
waves (ℓ = 0) for simplicity gives the analytic results
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Here F0, F
′
0, G0, G

′
0 are the dimensionless ℓ = 0 two-

particle Landau-Migdal parameters, as defined for ex-
ample in Ref. 2). While the isoscalar H(2pc)

0 is positive
definite and of the order of unity or even larger, de-
pending mainly on the magnitude of G′

0, the isovector
H

′(2pc)
0 is negative and small compared to unity for

most of the published sets of Landau-Migdal param-
eters. Because the p-wave term H1 is suppressed by
large factors,1) this simple estimate makes it plausible
that the three-body interactions give a large positive
contribution to J , and a small negative contribution
to L. To obtain more quantitative results, it would be
interesting to apply the Faddeev method in the frame-
work of effective field theories for nuclear matter.
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