β - γ Spectroscopy of ¹⁹²Re

H. Watanabe,^{*1,*2,*3} Y. X. Watanabe,^{*3} Y. Hirayama,^{*3} A. N. Andreyev,^{*4,*5} T. Hashimoto,^{*6} F. G. Kondev,^{*7}
G. J. Lane,^{*8} Yu. A. Litvinov,^{*9} J. J. Liu,^{*10} H. Miyatake,^{*3} J. Y. Moon,^{*6} A. I. Morales,^{*11} M. Mukai,^{*2,*3,*12}
S. Nishimura,^{*2} T. Niwase,^{*2,*13} M. Rosenbusch,^{*3} P. Schury,^{*3} M. Wada,^{*3} and P. M. Walker^{*14}

Decay spectroscopy of ¹⁹²Re has been carried out using the KEK Isotope Separation System (KISS).¹⁻³⁾ A RI beam of ¹⁹²Re was produced via multi-nucleon transfer between a 50-particle-nA projectile of ¹³⁶Xe and a natural Pt target with a thickness of 10.7 mg/cm^2 . The 10.75-MeV/nucleon primary beam from the RIKEN Ring Cyclotron was decelerated to 8.8 MeV/nucleon after passing through Ti degraders placed in front of the Pt target. The reaction products were thermalized and neutralized in a doughnut-shaped gas cell filled with 80kPa gaseous argon, and then transported by a gas flow to the cell outlet, where a two-color, two-step resonant laser ionization technique was applied for an unambiguous selection of a single element. The singly charged 192 Re⁺ ions were extracted through the RF ion guides and reaccelerated at 20 keV, followed by mass separation using the KISS spectrometer.

During 4.2 days of data run, about 1.5×10^{5} ¹⁹²Re nuclides were collected with an average intensity of 0.3 particles/s on a 12- μ m-thick aluminized mylar tape at the end of the KISS beamline. The decay measurements were carried out with three different beam-on/off conditions of 90/180, 24/48, and 45/15 s in order to accommodate decays both from the ground state ($T_{1/2} =$ 16(1) s⁴) and from a previously reported long-lived isomer ($T_{1/2} = 61^{+40}_{-20}$ s⁵) in ¹⁹²Re. The implantation position was surrounded by a multi-segmented proportional gas counter (MSPGC) that covered 80% of the 4π solid angle with two layers of 16 counters.⁶) The MSPGC was surrounded by four large-volume Clover-type HPGe detectors in a close geometry, having a γ -ray add-backed full-energy peak efficiency of 7.8% at 1 MeV.

Figure 1 shows an example of the β -delayed γ -ray coincidence spectrum and the decay scheme of ¹⁹²Re obtained in the present work. More details about the experimental results and physics discussion are described in Ref. 7).

- *¹ School of Physics, Beihang University
- *² RIKEN Nishina Center
- $^{\ast 3}$ $\,$ Wako Nuclear Science Center (WNSC), IPNS, KEK
- *4 Department of Physics, University of York
- *5 Advanced Science Research Center, Japan Atomic Energy Agency (JAEA)
- *6 Rare Isotope Science Project, Institute for Basic Science (IBS)
- *7 Physics Division, Argonne National Laboratory
 *8 Department of Nuclear Physics Australian National Univer-
- ** Department of Nuclear Physics, Australian National University
 ** CCI Halma alternative für Schwarienenforschung
- *9 GSI Helmholtzzentrum für Schwerionenforschung
- *¹⁰ Department of Physics, the University of Hong Kong
 *¹¹ Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia)
- *12 Graduate School of Sciences and Technology, University of Tsukuba
- ^{*13} Department of Physics, Kyushu University
- *¹⁴ Department of Physics, University of Surrey

Fig. 1. Top: γ -ray energy spectrum measured in coincidence with MSPGC following implantation of ¹⁹²Re. Transitions in ¹⁹²Os are labeled with their energy values, while γ -ray peaks that originate from the room background and beam contaminants are marked with crosses and asterisk, respectively. The inset magnifies a high-energy region. Bottom: Level scheme of ¹⁹²Os populated in the β decay of ¹⁹²Re. The observed γ rays are consistent with those reported in Ref. 4). The superscript "1u" indicates first-forbidden unique β decay.

References

- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B 353, 4 (2015).
- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B 376, 52 (2016).
- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B 412, 11 (2017).
- 4) C. M. Baglin, Nucl. Data Sheets 113, 1871 (2012).
- 5) M. W. Reed et al., Phys. Rev. C 86, 054321 (2012).
- M. Mukai *et al.*, Nucl. Instrum. Methods Phys. Res. A 884, 1 (2018).
- 7) H. Watanabe et al., Phys. Lett. B 814, 136088 (2021).