Shape evolution of ${ }^{106,108, ~}{ }^{110} \mathrm{Mo}$ in the triaxial degree of freedom ${ }^{\dagger}$

J. Ha, ${ }^{* 1, * 2}$ T. Sumikama, ${ }^{* 2, * 3}$ F. Browne, ${ }^{* 2, * 4}$ N. Hinohara, ${ }^{* 5}$ A. M. Bruce, ${ }^{* 4}$ S. Choi, ${ }^{* 1}$ I. Nishizuka, ${ }^{* 3}$
S. Nishimura, ${ }^{* 2}$ P. Doornenbal, ${ }^{* 2}$ G. Lorusso, ${ }^{* 2, * 6, * 7}$ P. -A. Söderström, ${ }^{* 2}$ H. Watanabe, ${ }^{* 2, * 8}$ R. Daido, ${ }^{* 9}$ Z. Patel, ${ }^{* 2, * 6}$ S. Rice, ${ }^{* 2, * 6}$ L. Sinclair, ${ }^{* 2, * 10}$ J. Wu, ${ }^{* 2, * 11 ~ Z . ~ Y . ~ X u, ~}{ }^{* 12, * 13}$ A. Yagi, ${ }^{* 9}$ H. Baba, ${ }^{* 2}$ N. Chiga, ${ }^{* 2, * 3}$ R. Carroll, ${ }^{* 6}$ F. Didierjean, ${ }^{* 14}$ Y. Fang, ${ }^{* 9}$ N. Fukuda, ${ }^{* 2}$ G. Gey, ${ }^{* 15, * 16}$ E. Ideguchi, ${ }^{* 9}$ N. Inabe, ${ }^{* 2}$ T. Isobe, ${ }^{* 2}$ D. Kameda, ${ }^{* 2}$ I. Kojouharov, ${ }^{* 17}$ N. Kurz, ${ }^{* 17}$ T. Kubo, ${ }^{* 2}$ S. Lalkovski, ${ }^{* 18}$ Z. Li, ${ }^{* 11}$ R. Lozeva, ${ }^{* 14, * 19}$ H. Nishibata, ${ }^{* 9}$ A. Odahara, ${ }^{* 9}$ Zs. Podolyák, ${ }^{* 6}$ P. H. Regan, ${ }^{* 6, * 7}$ O. J. Roberts, ${ }^{* 4}$ H. Sakurai, ${ }^{* 2}$ H. Schaffner, ${ }^{* 17}$ G. S. Simpson, ${ }^{* 15}$ H. Suzuki, ${ }^{* 2}$ H. Takeda, ${ }^{* 2}$ M. Tanaka, ${ }^{* 9}$ J. Taprogge, ${ }^{* 2, * 20, * 21}$ V. Werner, ${ }^{* 22, * 23}$ and O. Wieland ${ }^{* 24}$

The properties of the 2_{2}^{+}band in even-even nuclei are closely connected with the triaxial motion in the direction of the γ degree of freedom, such as the γ vibration, rigid triaxial rotor, ${ }^{1)}$ or γ-unstable rotor. ${ }^{2)}$ The lowering of the known 2_{2}^{+}-state energy in neutronrich molybdenum isotopes $(Z=42)$ is interpreted as the development of these triaxial motions associated with the ground-state shape. We studied the neutron-rich ${ }^{106}, 108,{ }^{110}$ Mo isotopes with higher statistics by measuring the β-delayed γ rays.

A neutron-rich cocktail beam was produced from the fragmentation of a $345-\mathrm{MeV} /$ nucleon ${ }^{238} \mathrm{U}^{86+}$ beam. The nuclides were separated and identified on the BigRIPS separator and delivered to F11. The ions and β particles were detected by the WAS3ABi active stopper. A high-purity Ge array, EURICA, ${ }^{3)}$ and fast-timing $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array were used to measure the energy and time of γ rays.

Figure 1 shows $B(E 2)$ determined from the lifetime measurement of the 2_{1}^{+}states using the $\operatorname{LaBr}_{3}(\mathrm{Ce})$ array. The quadrupole deformation parameters β_{2} of ${ }^{106,108,110}$ Mo were deduced to be $0.349(13), 0.327(10)$, and $0.305(7)$, respectively. The results were compared

[^0]

Fig. 1. $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$of the neutron-rich Mo isotopes. The theoretical results calculated with SLy4 and SLy5+T interactions are shown.
with beyond-mean-field calculations using SLy4 and SLy5 5 T interactions, for which the predicted groundstate shapes were oblate and prolate, respectively. The prolate shape was indicated because the calculation with the $\mathrm{SLy} 5+\mathrm{T}$ interaction reproduces both $B(E 2)$ and the energies of the ground-state band.

The 2_{2}^{+}band in ${ }^{110} \mathrm{Mo}$ was extended up to the 7^{+} state. The energy staggerings of the 2_{2}^{+}bands in ${ }^{106}, 108,{ }^{110}$ Mo are close to that of the axially symmetric rotor of the γ-vibrational state, rather than Davydov's rigid-triaxial rotor model or Wilets-Jean model for γ unstable nuclei. A candidate of the two-phonon γ vibrational band with $K^{\pi}=4^{+}$, which has not been well established yet, was found in ${ }^{110} \mathrm{Mo}$. The $K^{\pi}=4^{+}$band decays only to the γ-vibrational band, and the energy of the $K^{\pi}=4^{+}$state is 2.5 times larger than that of the 2_{2}^{+}state. Moreover, new 0_{2}^{+}states were assigned in ${ }^{108} \mathrm{Mo}$ and ${ }^{110} \mathrm{Mo}$.

The spin and parity of parent nuclei were assigned from the $\log f t$ values to be 4^{-}and 2^{-}for the ground state in ${ }^{106} \mathrm{Nb}$ and ${ }^{108} \mathrm{Nb}$, respectively. Two β-decaying states were identified in ${ }^{110} \mathrm{Nb}$, and their spin-parities were asigned as 2^{-}and 6^{-}.

References

1) A. S. Davydov, G. F. Filippov, Nucl. Phys. 8, 237 (1958).
2) L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956).
3) P. -A. Söderström et al., Nucl. Instrum. Methods Phys. Res. B 317, 649 (2013).

[^0]: \dagger Condensed from the article in Phys. Rev. C 101, 044311 (2020)
 *1 Department of Physics and Astronomy, Seoul National University
 *2 RIKEN Nishina Center
 *3 Department of Physics, Tohoku University
 *4 School of Computing, Engineering, and Mathematics, University of Brighton
 *5 Center for Computational Sciences, University of Tsukuba
 *6 Department of Physics, University of Surrey
 *7 National Physical Laboratory
 *8 IRCNPC, School of Physics and Nuclear Energy Engineering, Beihang University
 *9 Department of Physics, Osaka University
 *10 Department of Physics, University of York
 *11 Department of Physics, Peking University
 *12 Department of Physics, University of Tokyo
 *13 Department of Physics, University of Hong Kong
 *14 IPHC, CNRS/IN2P3, Université de Strasbourg
 *15 LPSC, Université Grenoble-Alpes
 *16 ILL
 *17 GSI Helmholtzzentrum für Schwerionenforschung GmbH
 *18 Department of Physics, University of Sofia
 *19 CSNSM, CNRS/IN2P3, Université Paris-Sud
 *20 Departamento de Física Teórica, Universidad Autónoma de Madrid
 *21 Instituto de Estructura de la Materia, CSIC
 *22 A.W. Wright Nuclear Structure Laboratory, Yale University
 *23 Institut für Kernphysik, Technische Universität Darmstadt
 *24 INFN Sezione di Milano

