Shape evolution of $^{106, 108, 110}$ Mo in the triaxial degree of freedom[†]

J. Ha,^{*1,*2} T. Sumikama,^{*2,*3} F. Browne,^{*2,*4} N. Hinohara,^{*5} A. M. Bruce,^{*4} S. Choi,^{*1} I. Nishizuka,^{*3}
S. Nishimura,^{*2} P. Doornenbal,^{*2} G. Lorusso,^{*2,*6,*7} P. -A. Söderström,^{*2} H. Watanabe,^{*2,*8} R. Daido,^{*9}
Z. Patel,^{*2,*6} S. Rice,^{*2,*6} L. Sinclair,^{*2,*10} J. Wu,^{*2,*11} Z. Y. Xu,^{*12,*13} A. Yagi,^{*9} H. Baba,^{*2} N. Chiga,^{*2,*3}
R. Carroll,^{*6} F. Didierjean,^{*14} Y. Fang,^{*9} N. Fukuda,^{*2} G. Gey,^{*15,*16} E. Ideguchi,^{*9} N. Inabe,^{*2} T. Isobe,^{*2}
D. Kameda,^{*2} I. Kojouharov,^{*17} N. Kurz,^{*17} T. Kubo,^{*2} S. Lalkovski,^{*18} Z. Li,^{*11} R. Lozeva,^{*14,*19} H. Nishibata,^{*9}
A. Odahara,^{*9} Zs. Podolyák,^{*6} P. H. Regan,^{*6,*7} O. J. Roberts,^{*4} H. Sakurai,^{*2} H. Schaffner,^{*17} G. S. Simpson,^{*15} H. Suzuki,^{*2} H. Takeda,^{*2} M. Tanaka,^{*9} J. Taprogge,^{*2,*20,*21} V. Werner,^{*22,*23} and O. Wieland^{*24}

The properties of the 2^+_2 band in even-even nuclei are closely connected with the triaxial motion in the direction of the γ degree of freedom, such as the γ vibration, rigid triaxial rotor,¹⁾ or γ -unstable rotor.²⁾ The lowering of the known 2^+_2 -state energy in neutronrich molybdenum isotopes (Z = 42) is interpreted as the development of these triaxial motions associated with the ground-state shape. We studied the neutron-rich ^{106, 108, 110}Mo isotopes with higher statistics by measuring the β -delayed γ rays.

A neutron-rich cocktail beam was produced from the fragmentation of a 345-MeV/nucleon ²³⁸U⁸⁶⁺ beam. The nuclides were separated and identified on the BigRIPS separator and delivered to F11. The ions and β particles were detected by the WAS3ABi active stopper. A high-purity Ge array, EURICA,³⁾ and fast-timing LaBr₃(Ce) array were used to measure the energy and time of γ rays.

Figure 1 shows B(E2) determined from the lifetime measurement of the 2_1^+ states using the LaBr₃(Ce) array. The quadrupole deformation parameters β_2 of $^{106, 108, 110}$ Mo were deduced to be 0.349(13), 0.327(10), and 0.305(7), respectively. The results were compared

- † Condensed from the article in Phys. Rev. C 101, 044311 (2020)
- *1 Department of Physics and Astronomy, Seoul National University
- *² RIKEN Nishina Center
- *³ Department of Physics, Tohoku University
- $^{\ast 4}~$ School of Computing, Engineering, and Mathematics, University of Brighton
- *⁵ Center for Computational Sciences, University of Tsukuba
- *6 Department of Physics, University of Surrey
- *7 National Physical Laboratory
- *8 IRCNPC, School of Physics and Nuclear Energy Engineering, Beihang University
- *9 Department of Physics, Osaka University
- ^{*10} Department of Physics, University of York
- *¹¹ Department of Physics, Peking University
- $^{\ast 12}$ Department of Physics, University of Tokyo
- $^{\ast 13}$ Department of Physics, University of Hong Kong
- $^{\ast 14}$ IPHC, CNRS/IN2P3, Université de Strasbourg
- $^{*15}\,$ LPSC, Université Grenoble-Alpes
- *16 ILL
- $^{\ast 17}$ GSI Helmholtzzentrum für Schwerionenforschung GmbH
- *¹⁸ Department of Physics, University of Sofia
- *¹⁹ CSNSM, CNRS/IN2P3, Université Paris-Sud
- $^{\ast 20}$ Departamento de Física Teórica, Universidad Autónoma de Madrid
- $^{\ast 21}$ Instituto de Estructura de la Materia, CSIC
- $^{\ast 22}\,$ A.W. Wright Nuclear Structure Laboratory, Yale University
- $^{\ast 23}$ Institut für Kernphysik, Technische Universität Darmstadt
- *²⁴ INFN Sezione di Milano

0.4Mo isotopes SLv5+ 0.35 $B(E2;2_1^+ \rightarrow 0_1^+) \ [e^2b^2]$ SLy4 0.3 þ 0.25 0.2 Ō 0.15 0.1 0.05 0 58 60 62 64 66 68 Neutron number

Fig. 1. $B(E2; 2_1^+ \rightarrow 0_1^+)$ of the neutron-rich Mo isotopes. The theoretical results calculated with SLy4 and SLy5+T interactions are shown.

with beyond-mean-field calculations using SLy4 and SLy5+T interactions, for which the predicted groundstate shapes were oblate and prolate, respectively. The prolate shape was indicated because the calculation with the SLy5+T interaction reproduces both B(E2) and the energies of the ground-state band.

The 2_2^+ band in ¹¹⁰Mo was extended up to the 7⁺ state. The energy staggerings of the 2_2^+ bands in ^{106, 108, 110}Mo are close to that of the axially symmetric rotor of the γ -vibrational state, rather than Davydov's rigid-triaxial rotor model or Wilets-Jean model for γ unstable nuclei. A candidate of the two-phonon γ vibrational band with $K^{\pi} = 4^+$, which has not been well established yet, was found in ¹¹⁰Mo. The $K^{\pi} = 4^+$ band decays only to the γ -vibrational band, and the energy of the $K^{\pi} = 4^+$ state is 2.5 times larger than that of the 2_2^+ state. Moreover, new 0_2^+ states were assigned in ¹⁰⁸Mo and ¹¹⁰Mo.

The spin and parity of parent nuclei were assigned from the log ft values to be 4⁻ and 2⁻ for the ground state in ¹⁰⁶Nb and ¹⁰⁸Nb, respectively. Two β -decaying states were identified in ¹¹⁰Nb, and their spin-parities were asigned as 2⁻ and 6⁻.

References

- 1) A. S. Davydov, G. F. Filippov, Nucl. Phys. 8, 237 (1958).
- 2) L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956).
- P. -A. Söderström *et al.*, Nucl. Instrum. Methods Phys. Res. B **317**, 649 (2013).