Spectroscopy of 99 Cd and 101 In from β decays of 99 In and 101 Sn[†]

J. Park,^{*1} R. Krücken,^{*2} D. Lubos,^{*3} R. Gernhäuser,^{*3} M. Lewitowicz,^{*4} S. Nishimura,^{*5} and H. Sakurai^{*6}, for the EURICA Collaboration

Experimental knowledge in the doubly magic ¹⁰⁰Sn region, relevant for tests of nuclear shell models (SM), proton-neutron interactions in $N \approx Z \approx 50$ nuclei and the end of the rapid proton-capture process (rpprocess) in nuclear astrophysics, has been expanded through a β -decay spectroscopy campaign at RIBF.¹⁾ The literature on β decays of ⁹⁹In and ¹⁰¹Sn has been either nonexistent or contentious due to low statistics, but subsequent analyses of the β -delayed γ -ray spectroscopy data from the RIBF9 experiment revealed new states in ⁹⁹Cd and addressed the ambiguity concerning the level scheme of 101 In.

Using WAS3ABi²⁾ and EURICA³⁾ detectors which were deployed at the end of the ZeroDegree spectrometer, decay events following ⁹⁹In and ¹⁰¹Sn ion implantations were correlated. 30 new γ rays belonging to ⁹⁹Cd were observed, and a subset of γ rays previously assigned to ¹⁰¹In has been confirmed in this measurement. Two new high-energy γ rays were assigned to ¹⁰¹In in this work. The available γ - γ coincidence data was analyzed to build on the level scheme of ⁹⁹Cd, as shown in Fig. 1. Alternatively, the experimental energies and intensities of the γ rays were compared with the SM calculations based on the SR88MHJM⁴) interaction, in a model space of $\pi(2p_{1/2}, 1g_{9/2})$ and $\nu(1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 3s_{1/2}, 1h_{11/2})$ orbitals above the ⁸⁸Sr core. The effect of varying effective charges and theoretical transition energies on the branching ratios of γ rays was assessed. Tentative assignments of new excited states were made for both ⁹⁹Cd and ¹⁰¹In, where a good agreement was found within theoretical uncertainties. No significant inconsistencies in the intensities of γ rays were found between the experiment and theory in a γ -ray energy range of 0–2500 keV.

 β -delayed proton emission events from the decay of ¹⁰¹Sn were recorded and incorporated in the γ -ray intensity analysis. The competition between branching ratios of protons versus γ rays from high-energy states in ¹⁰¹In was evaluated using a semi-empirical theory on proton emission.⁵⁾ The two competing hypotheses concerning the ground-state spin of ¹⁰¹Sn, being either the $5/2^+$ based on the $2d_{5/2}$ single-neutron configuration or the $7/2^+$ based on the $1g_{7/2}$ configuration, were examined by comparing the experimental γ -ray

- *3 Physik Department, Technische Universität München
- *4 Grand Accélérateur National d'Ions Lourds (GANIL)

Fig. 1. Experimental level scheme of ⁹⁹Cd, compared to SM calculations. Only the states revealed by the β decay of ⁹⁹In are shown. The blue arrows indicate new γ rays observed in this work.

intensities and the integrated β -delayed proton emission branching ratio to theoretical values. Due to the imprecise knowledge of the proton separation energy of ¹⁰¹In and low experimental γ -ray statistics, there was insufficient circumstantial evidence for an unambiguous spin assignment of the ground state of ¹⁰¹Sn. Determining the single-particle energies of the N = 51isotones, ⁹⁹Cd and ¹⁰¹Sn, would result in an enhanced systematic review of the N = 50 shell evolution in the proton-rich nuclei close to ¹⁰⁰Sn.

References

- 1) J. Park et al., Phys. Rev. C 99, 034313 (2019).
- 2) S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- 3) P. -A. Söderström et al., Nucl. Instrum. Methods Phys. Res. B **317**, 649 (2013).
- 4) D. T. Yordanov et al., Phys. Rev. C 98, 011303(R) (2018).
- 5) D. S. Delion, R. J. Liotta, R. Wyss, Phys. Rep. 424, 113 (2006).

t Condensed from the article in Phys. Rev. C. 102, 014304 (2020)

^{*1} Center for Exotic Nuclear Studies, Institute for Basic Science *2

TRIUMF

^{*5} **RIKEN** Nishina Center

^{*6} Department of Physics, University of Tokyo