On the β -decay of ⁷⁰Kr

A. Vitéz-Sveiczer, *1,*2,*3 A. Algora, *1,*2 A. I. Morales, *1 B. Rubio, *1 G. Kiss, *2 J. Agramunt, *1 V. Guadilla, *1 A. Montaner-Pizá, *1 S. E. A. Orrigo, *1 A. Horváth, *3 G. de Angelis, *4 D. Napoli, *4 F. Recchia, *5

A. Montaner-Pizá,^{*1} S. E. A. Orrigo,^{*1} A. Horváth,^{*3} G. de Angelis,^{*4} D. Napoli,^{*4} F. Recchia,^{*5}
S. Lenzi,^{*5}A. Boso,^{*5} S. Nishimura,^{*6} V. H. Phong,^{*6} J. Wu,^{*6} P. -A. Söderström,^{*6} T. Sumikama,^{*6}
H. Suzuki,^{*6} H. Takeda,^{*6} D. S. Ahn,^{*6} H. Baba,^{*6} P. Doornebal,^{*6} N. Fukuda,^{*6} N. Inabe,^{*6} T. Isobe,^{*6}
T. Kubo,^{*6} S. Kubono,^{*6} H. Sakurai,^{*6} Y. Shimizu,^{*6} C. Sidong,^{*6} B. Blank,^{*7} P. Ascher,^{*7} M. Gerbaux,^{*7}
T. Goigoux,^{*7}J. Giovinazzo,^{*7} S. Grévy,^{*7} T. Kurtukián Nieto,^{*7} C. Magron,^{*7} W. Gelletly,^{*1,*8} Zs. Dombrádi,^{*7}
Y. Fujita,^{*9} M. Tanaka,^{*9} P. Aguilera,^{*10} F. Molina,^{*10} J. Eberth,^{*11} F. Diel,^{*11} D. Lubos,^{*12} C. Borcea,^{*13}
E. Ganioglu,^{*14} D. Nishimura,^{*15} H. Oikawa,^{*15} Y. Takei,^{*15} S. Yagi,^{*15} W. Korten,^{*16} G. de France,^{*17}

P. Davies,^{*18} J. Liu,^{*19} J. Lee,^{*19} T. Lokotko,^{*19} I. Kojouharov,^{*20} N. Kurz,^{*20} and H. Shaffner^{*20}

In this contribution, we present preliminary results of the analysis of the β -decay of ⁷⁰Kr from the experiment NP1112-RIBF93. The main goal of the experiment was to study isospin-related effects and p-npairing signatures in the region of $A \sim 70$ using the information obtained from the β -decays of 70,71 Kr.

To produce the isotopes of interest the fragmentation of a ⁷⁸Kr primary beam with an energy of 345 MeV/nucleon was used. Average beam currents of 40 particle nA were provided by the RIKEN Nishina Center accelerator complex. The ⁷⁸Kr primary beam impinged on a 5 mm thick ⁹Be target to produce a cocktail radioactive beam. The fragments produced were then separated and selected using the BigRIPS separator. The ions were then implanted in the WAS3ABi active stopper, surrounded by the EURICA γ -ray spectrometer¹) for the study of their β decay.

Gamma rays associated to the de-excitation of states populated in the daughter nucleus ⁷⁰Br were identified using conventional $\beta - \gamma$ and $\beta - \gamma - \gamma$ coincidence techniques similarly to the procedure followed in Ref. 2). For more details see Refs. 3, 4). The analysis has also allowed us to improve the precision of the deduced $\beta\text{-}$ decay half-life and construct the level scheme of states populated in the decay, which extends up to 3.3 MeV excitation energy in ⁷⁰Br.

In Fig. 1 we present the deduced Gamow-Teller β

- *1 IFIC, CSIC-Univ. Valencia
- *2MTA ATOMKI
- *3 ELTE TTK Fizikai Intézet
- *4 INFN Laboratori Nazionali di Legnaro
- *5 INFN Sezione di Padova
- *6 **RIKEN** Nishina Center
- *7CEN Bordeaux-Gradignan
- *8 Department of Physics, Surrey University
- *9 Department of Physics, Osaka University
- *10 Comisión Chilena de Energía Nuclear (CCHEN)
- $^{\ast 11}$ Institut für Kernphysik, Universität zu Köln
- $^{\ast 12}$ Physik Department, Technische Universität München
- *13National Institute for Physics and Nuclear Engineering, IFIN-HH
- *14 Department of Physics, University of Istanbul
- $^{\ast 15}$ Department of Physics, Tokyo University of Science
- *¹⁶ IRFU, CEA, Université Paris-Saclay
- *17 GANIL
- *¹⁸ Department of Physics, York University
- *¹⁹ Department of Physics, University of Hong Kong
- $^{\ast 20}$ GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fig. 1. Preliminary comparison of the experimental (black) and calculated accumulated B(GT) values for the ^{70}Kr \rightarrow ⁷⁰Br β decay.⁵⁾ The experimental B(GT) uncertainties are determined by the feeding error of the levels and the error of the half-life. The orange solid line corresponds to the values calculated for the oblate minimum, the blue dashed line corresponds to the prolate minimum of the ground state of ⁷⁰Kr.

strength in the daughter nucleus compared to the predictions of the *pn* quasiparticle random-phase approximation (pnQRPA) calculations for two possible deformation minima in ⁷⁰Kr.⁵⁾ The calculations presented here are based on the SLy4 force, which is a well tested force throughout the whole nuclear chart. Alternative theoretical calculations are also performed using a pseudo-LS model.⁶⁾ We are presently working in the final details of a publication⁷) based on this study.

References

- 1) S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- 2) A. I. Morales et al., Phys. Rev. C 95, 064327 (2017).
- 3) A. Vitéz-Sveiczer et al., RIKEN Accel. Prog. Rep. 53, 28(2019).
- 4) A. Vitéz-Sveiczer et al., Acta Phys. Pol. B 51, 587 (2020).
- 5) P. Sarriguren, private communication.
- 6) P. Van Isacker, private communication.
- 7) A. Vitéz-Sveiczer et al., in preparation.