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Measurement of proton elastic scattering from 132Sn at
300 MeV/nucleon in inverse kinematics
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The equation of state (EOS) of nuclear matter is ex-
pressed as the EOS of the symmetric nuclear matter and
the symmetry energy. Particularly, the symmetry en-
ergy is important for understanding astrophysical phe-
nomena, such as neutron stars. The EOS of symmet-
ric nuclear matter is understood from previous experi-
ments on stable nuclei, however there is much less un-
derstanding of the the symmetry energy. From many
theoretical studies, it is known that the slope parame-
ter of the symmetry energy is strongly correlated with
neutron skin thickness, which is defined as the difference
between the neutron and proton root-mean-square radii.
In neutron-rich nuclei, the excess neutrons form a neu-
tron skin structure. It is expected that this symmetry
energy can be constrained by determining the neutron
skin thickness from the neutron and proton density dis-
tributions.

We employed proton elastic scattering to extract neu-
tron and proton density distributions. For stable nuclei,
we have established a method to extract the proton and
neutron density distributions using proton elastic scat-
tering.1) To employ this method to unstable nuclei with
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Fig. 1. A/Q spectrum of secondary beam including 132Sn

deduced from position and time-of-flight information at
BigRIPS. The peak of 132Sn is located at A/Q = 2.64
shown in red. The A/Q resolution in r.m.s is 0.058%.
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Fig. 2. Kinematical correlations of 132Sn between scattering
angles θ and kinematic energies of scattered protons Tp.
The red dotted line indicates elastic scattering events be-
tween 132Sn at 303.9 MeV/nucleon and protons.

large asymmetry, we started a new project to measure
the elastic scattering of protons with RI beams (ESPRI)
in inverse kinematics. We developed a recoil proton
spectrometer (RPS), which consists of a 1-millimeter-
thick solid hydrogen target (SHT2)), two multi-wire drift
chambers (MWDCs), two plastic scintillators, and four-
teen NaI rods. We measure the angle and energy of the
recoil protons from the SHT using the RPS. We success-
fully performed ESPRI measurements for several light
unstable nuclei.3)

132Sn has a larger isospin asymmetry than 208Pb, and
is expected to have a thicker neutron skin thickness. In
Novenver 2019, we performed proton elastic scattering
from 132Sn at 300 MeV/nucleon at the F12 area.4) The
total beam rate was up to 600 kcps, and the purity of
132Sn was 20%. The A/Q spectrum of the secondary
beam including 132Sn under high intensity is shown in
Fig. 1. We identified elastic events of 132Sn from the cor-
relation of the kinematic energies and recoil angles of the
scattered protons with NaI rods and MWDCs as shown
in Fig. 2. Data analysis for deducing the excitation en-
ergy spectrum of 132Sn and the angular distribution of
the cross section is now in progress.
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Results on the β decay of 60Ge and 62Ge measured at RIBF
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The investigation of the structure of nuclei close to
the limits of stability is a topic of paramount importance
in modern nuclear physics. The Tz = −2, 60Ge nucleus
is a semi-magic, N = 28 isotone whose decay is almost
unknown. An exotic feature seen in other Tz = −2 nu-
clei1,2) is the competition between the γ de-excitation
and the (isospin-forbidden) proton emission from the
T = 2 isobaric analog state populated by β decay in the
daughter nucleus. Little was known about the decay of
the Tz = −1, 62Ge nucleus. In other Tz = −1 nuclei a
suppression of isoscalar γ transitions between Jπ = 1+,
T = 0 states (Warburton and Weneser quasi-rule3,4))
has been observed.5)

Heavy proton-rich nuclei can be produced with un-
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Fig. 1. Time correlations between 60Ge implants in
WAS3ABi and subsequent β-delayed protons (Ep >
1 MeV) detected in the same pixel of WAS3ABi.
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Fig. 2. Time correlations between implanted 62Ge ions and
β decays in the same or adjacent pixel of WAS3ABi.

precedented statistics at the Radioactive Isotope Beam
Factory (RIBF) of the RIKEN Nishina Center. In the
NP1112-RIBF82 experiment, 1.5×104 60Ge and 2.1×106
62Ge ions were recorded. They were produced by frag-
menting a 78Kr primary beam (345 MeV/nucleon and
intensity up to 250 particle nA) on a Be target. The
fragments were selected and identified by the BigRIPS
separator by means of the Bρ-∆E-ToF method. They
were then implanted in the WAS3ABi setup, consisting
of three 1-mm-thick double-sided Si strip detectors of
a 6 × 4 cm2 area. The EURICA array, arranged in 12
clusters containing 7 high-purity Ge crystals each, was
used for γ detection.

For 60Ge, the first experimental information on both
the β-delayed proton and γ emissions has been ex-
tracted. By gating on the β-delayed proton emission,
a half-life value of 25.0(3) ms has been obtained for
60Ge (Fig. 1). For 62Ge, new information on the β-
delayed γ emission has been obtained, indicating the
persistence of the quasi-rule.3,4) A half-life value of
73.5(1) ms has been extracted for 62Ge (Fig. 2). The
precision on both 60Ge and 62Ge half-lives has been im-
proved in comparison with values in the literature.
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