Results on the β decay of ⁶⁰Ge and ⁶²Ge measured at RIBF

S. E. A. Orrigo,^{*1} B. Rubio,^{*1} W. Gelletly,^{*1,*2} P. Aguilera,^{*1,*3} A. Algora,^{*1,*4} A. I. Morales,^{*1} J. Agramunt,^{*1}

D. S. Ahn, *5 P. Ascher, *6 B. Blank, *6 C. Borcea, *7 A. Boso, *8 R. B. Cakirli, *9 J. Chiba, *10 G. de Angelis, *11

G. de France,^{*12} F. Diel,^{*13} P. Doornenbal,^{*5} Y. Fujita,^{*14} N. Fukuda,^{*5} E. Ganioğlu,^{*9} M. Gerbaux,^{*6}

J. Giovinazzo,^{*6} S. Go,^{*15} T. Goigoux,^{*6} S. Grévy,^{*6} V. Guadilla,^{*1} N. Inabe,^{*5} G. G. Kiss,^{*4,*5} T. Kubo,^{*5} S. Kubono,^{*5} T. Kurtukian-Nieto,^{*6} D. Lubos,^{*16} C. Magron,^{*6} F. Molina,^{*3} A. Montaner-Pizá,^{*1} D. Napoli,^{*11} D. Nishimura,^{*17} S. Nishimura,^{*5} H. Oikawa,^{*10} V. H. Phong,^{*5,*18} H. Sakurai,^{*5,*19} Y. Shimizu,^{*5} C. Sidong,^{*5} P. -A. Söderström,^{*5} T. Sumikama,^{*5} H. Suzuki,^{*5} H. Takeda,^{*5} Y. Takei,^{*10} M. Tanaka,^{*14} J. Wu,^{*5} S. Yagi^{*10}

The investigation of the structure of nuclei close to the limits of stability is a topic of paramount importance in modern nuclear physics. The $T_z = -2$, ⁶⁰Ge nucleus is a semi-magic, N = 28 isotone whose decay is almost unknown. An exotic feature seen in other $T_z = -2$ nu $clei^{(1,2)}$ is the competition between the γ de-excitation and the (isospin-forbidden) proton emission from the T = 2 isobaric analog state populated by β decay in the daughter nucleus. Little was known about the decay of the $T_z = -1$, ⁶²Ge nucleus. In other $T_z = -1$ nuclei a suppression of isoscalar γ transitions between $J^{\pi} = 1^+$, T = 0 states (Warburton and Weneser quasi-rule^{3,4}) has been observed.⁵)

Heavy proton-rich nuclei can be produced with un-

Fig. 1. Time correlations between ⁶⁰Ge implants in WAS3ABi and subsequent β -delayed protons (E_p) 1 MeV) detected in the same pixel of WAS3ABi.

- *1 IFIC, CSIC-Univ. Valencia
- *2 Department of Physics, Surrey University
- *3 Chilean Nuclear Energy Commision
- *4MTA ATOMKI
- *5**RIKEN** Nishina Center
- *6CEN Bordeaux Gradignan
- *7National Institute for Physics and Nuclear Engineering, IFIN-HH
- *8 INFN Sezione di Padova
- *9 Department of Physics, Istanbul University
- $^{\ast 10}$ Department of Physics, Tokyo University of Science
- *11 INFN Laboratori Nazionali di Legnaro
- *12 GANIL
- $^{\ast 13}$ Institute of Nuclear Physics, University of Cologne
- *14 Department of Physics, Osaka University
- *15 Dept. of Physics and Astronomy, University of Tennessee
- *¹⁶ Physik Department E12, Technische Universität München
- *17 Department of Natural Sciences, Tokyo City University
- $^{\ast 18}$ Faculty of Physics, VNU University of Science
- ^{*19} Department of Physics, University of Tokyo

Fig. 2. Time correlations between implanted ⁶²Ge ions and β decays in the same or adjacent pixel of WAS3ABi.

precedented statistics at the Radioactive Isotope Beam Factory (RIBF) of the RIKEN Nishina Center. In the NP1112-RIBF82 experiment, 1.5×10^4 ⁶⁰Ge and 2.1×10^6 ⁶²Ge ions were recorded. They were produced by fragmenting a ⁷⁸Kr primary beam (345 MeV/nucleon and intensity up to 250 particle nA) on a Be target. The fragments were selected and identified by the BigRIPS separator by means of the $B\rho$ - ΔE -ToF method. They were then implanted in the WAS3ABi setup, consisting of three 1-mm-thick double-sided Si strip detectors of a 6×4 cm² area. The EURICA array, arranged in 12 clusters containing 7 high-purity Ge crystals each, was used for γ detection.

For ⁶⁰Ge, the first experimental information on both the β -delayed proton and γ emissions has been extracted. By gating on the β -delayed proton emission, a half-life value of 25.0(3) ms has been obtained for 60 Ge (Fig. 1). For 62 Ge, new information on the β delayed γ emission has been obtained, indicating the persistence of the quasi-rule.^{3,4)} A half-life value of 73.5(1) ms has been extracted for 62 Ge (Fig. 2). The precision on both $^{60}\mathrm{Ge}$ and $^{62}\mathrm{Ge}$ half-lives has been improved in comparison with values in the literature.

References

- 1) S. E. A. Orrigo et al., Phys. Rev. Lett. 112, 222501 (2014).
- 2) S. E. A. Orrigo et al., Phys. Rev. C 93, 044336 (2016).
- 3) G. Morpurgo, Phys. Rev. 110, 721 (1958).
- (4)D. H. Wilkinson, Isospin in Nuclear Physics, (Elsevier Science Publishing Co Inc., U.S., 1969).
- 5) F. Molina et al., Phys. Rev. C 91, 014301 (2015).