Production of ²⁶⁶Bh in the ²⁴⁸Cm(²³Na, 5n)²⁶⁶Bh reaction and its decay properties[†]

H. Haba,^{*1} F. Fan,^{*2} D. Kaji,^{*1} Y. Kasamatsu,^{*3} H. Kikunaga,^{*4} Y. Komori,^{*1} N. Kondo,^{*3} H. Kudo,^{*5} K. Morimoto,^{*1} K. Morita,^{*1,*6} M. Murakami,^{*7} K. Nishio,^{*8} J. P. Omtvedt,^{*9} K. Ooe,^{*10} Z. Qin,^{*2} D. Sato,^{*5} N. Sato,^{*1} T. K. Sato,^{*8} Y. Shigekawa,^{*1} A. Shinohara,^{*3} M. Takeyama,^{*11} T. Tanaka,^{*12} A. Toyoshima,^{*13} K. Tsukada,^{*8} Y. Wakabayashi,^{*14} Y. Wang,^{*1} S. Wulff,^{*9} S. Yamaki,^{*1} S. Yano,^{*1} Y. Yasuda,^{*3} and T. Yokokita^{*1}

The decay properties of the neutron-rich and longlived isotopes ²⁶⁷Bh and ²⁶⁶Bh, which are located around the deformed shell at Z = 108 and N = 162, were studied in the ²⁴⁹Bk(²²Ne, 5;4*n*)²⁶⁶, ²⁶⁷Bh,¹⁾ ²⁰⁹Bi(⁷⁰Zn, *n*)²⁷⁸Nh \rightarrow ²⁷⁴Rg \rightarrow ²⁷⁰Mt \rightarrow ²⁶⁶Bh,²⁾ ²⁴³Am(²⁶Mg, 3*n*)²⁶⁶Bh,³⁾ and ²⁴⁸Cm(²³Na, 5;4*n*)^{266, 267}Bh⁴⁾ reactions. However, the reported decay properties such as α energies and half-lives of the isotopes are not in good agreement. In this work, we investigated the excitation functions and decay properties of 266 Bh and 267 Bh via the 248 Cm $({}^{23}$ Na, 5;4n $)^{266, 267}$ Bh reactions using the GARIS gas-jet and MANON setups.⁵⁾

 248 Cm₂O₃ targets of 256–290 μ g/cm² thicknesses on $2-\mu m$ Ti backing foils were bombarded with a $^{23}Na^{7+}$ beam extracted from the RIKEN Heavy-Ion LINAC. The beam energies at the middle of the target were 121.2, 125.9, 130.6, and 135.3 MeV. The typical beam intensity was 3 p μ A. The evaporation residues (EVRs) of interest were separated in-flight from the beam particles and the majority of the nuclear transfer products by GARIS. At the focal plane of GARIS, the EVRs passed through a Mylar vacuum window foil of $0.7-\mu m$ thickness and entered the gas-jet chamber, where the EVRs were thermalized in He gas, attached to KCl aerosol particles, and transported through a Teflon capillary (2.0-mm *i.d.* \times 10-m length) to the rotating wheel apparatus MANON for α /SF-spectrometry. In MANON, the aerosol particles were deposited on a Au-coated (5 nm) Mylar foil of $0.5-\mu m$ thickness, forty of which were set on the periphery of a rotating wheel. The wheel was stepped to position the foils between 15 pairs of Si PIN photodiodes (Hamamatsu S3204-09). The step intervals of MANON were set to 5.0, 8.5, and 15.0 s.

We searched for time-correlated α - α and α -SF event

- *1 **RIKEN** Nishina Center
- *2 Institute of Modern Physics, Chinese Academy of Sciences
- *3 Graduate School of Science, Osaka University
- *4Research Center for Electron Photon Science, Tohoku Universitv
- *5 Department of Chemistry, Niigata University
- *6 Department of Physics, Kyushu University
- *7Decommissioning and Radioactive Waste Management Head Office, Japan Atomic Energy Agency
- *8 Advanced Science Research Center, Japan Atomic Energy Agency
- *9 Department of Chemistry, University of Oslo
- $^{\ast 10}$ Graduate School of Medicine, Osaka University
- $^{\ast 11}$ Faculty of Science, Yamagata University
- *12 Department of Nuclear Physics, Research School of Physics, The Australian National University
- $^{\ast 13}$ Institute for Radiation Sciences, Osaka University
- *14 Center for Advanced Photonics, RIKEN

Fig. 1. Cross sections for the 248 Cm $({}^{23}$ Na, 5;4 $n)^{266, 267}$ Bh reactions as a function of the laboratory-frame energy E_{Lab} . The curves are the HIVAP calculations⁶⁾ for the 248 Cm $(^{23}$ Na, $xn)^{271-x}$ Bh reactions (x = 3-6).

pairs in a time window of 340 s. Consequently, a total of 23 chains were assigned to ²⁶⁶Bh, its daughter nuclide ²⁶²Db, and granddaughter ²⁵⁸Lr, while no chain was assigned to 267 Bh. The α -particle energies of 266 Bh disperse widely in the range of $E_{\alpha} = 8.62 - 9.40$ MeV. The reported α groups of $E_{\alpha} = 9.29 \text{ MeV}^{(1)}, E_{\alpha} = 9.08 \text{ and}$ 9.39 MeV,²⁾ $E_{\alpha} = 9.03$ MeV,³⁾ and $E_{\alpha} = 8.82$, 8.84–8.99, and 9.05–9.23 MeV⁴⁾ for ²⁶⁶Bh are all within our α -energy range, except for $E_{\alpha} = 9.77$ MeV.²⁾ The halflife of ²⁶⁶Bh was measured to be $T_{1/2} = 10.0^{+2.6}_{-1.7}$ s, which is an order of magnitude longer than the previously reported values of $T_{1/2} \simeq 1 \, \mathrm{s}^{1)}$ and $T_{1/2} =$ $0.66^{+0.59}_{-0.26}$ s,³⁾ and 5 times longer than $T_{1/2} = 2.1^{+2.9}_{-0.8}$ s.²⁾ As shown in Fig. 1, the excitation function for the 248 Cm $(^{23}$ Na, $5n)^{266}$ Bh reaction was measured for the first time, and it indicates a maximum of $\sigma = 57 \pm 14$ pb at 130.6 MeV. The excitation function was reproduced by the statistical model code HIVAP.⁶) The upper-limit cross section of $\sigma~\leq~14$ pb was also derived for the 248 Cm $(^{23}$ Na, $4n)^{267}$ Bh reaction at 121.2 MeV.

References

- 1) P. A. Wilk et al., Phys. Rev. Lett. 85, 2697 (2000).
- 2) K. Morita et al., J. Phys. Soc. Jpn. 81, 103201 (2012).
- 3) Z. Qin et al., Nucl. Phys. Rev. 23, 400 (2006).
- 4) K. Morita et al., J. Phys. Soc. Jpn. 78, 064201 (2009).
- 5) H. Haba et al., Chem. Lett. 38, 426 (2009).
- 6) W. Reisdorf, M. Schädel, Z. Phys. A 343, 47 (1992).