II-1. Nuclear Physics

Gamow-Teller giant resonance in 11 Li neutron drip-line nucleus

L. Stuhl, *1,*2,*3 M. Sasano,*3 J. Gao,*3,*4 Y. Hirai,*5 K. Yako,*2 T. Wakasa,*5 D. S. Ahn,*3 H. Baba,*3

L. Stuhl,^{*1,*2,*3} M. Sasano,^{*3} J. Gao,^{*3,*4} Y. Hirai,^{*3} K. Yako,^{*2} T. Wakasa,^{*3} D. S. Ahn,^{*3} H. Baba,^{*3} A. I. Chilug,^{*6,*3} S. Franchoo,^{*7} Y. Fujino,^{*8} J. Gibelin,^{*9} I. S. Hahn,^{*1,*10} Z. Halász,^{*11} T. Harada,^{*12} M. N. Harakeh,^{*13,*14} D. Inomoto,^{*5} T. Isobe,^{*3} H. Kasahara,^{*5} D. Kim,^{*1,*15} G. G. Kiss,^{*11} T. Kobayashi,^{*16} Y. Kondo,^{*17} Z. Korkulu,^{*1,*3} S. Koyama,^{*18} Y. Kubota,^{*3} A. Kurihara,^{*17} H. N. Liu,^{*19} M. Matsumoto,^{*17} S. Michimasa,^{*2} H. Miki,^{*17} M. Miwa,^{*20} T. Motobayashi,^{*3} T. Nakamura,^{*17} M. Nishimura,^{*3} H. Otsu,^{*3} V. Panin,^{*3} S. Park,^{*10} A. T. Saito,^{*17} H. Sakai,^{*3} H. Sato,^{*3} T. Shimada,^{*17} Y. Shimizu,^{*3} S. Shimoura,^{*2} A. Spiridon,^{*6} I. C. Stefanescu,^{*6} X. Sun,^{*3,*4} Y. L. Sun,^{*19} H. Suzuki,^{*3} E. Takada,^{*21} Y. Togano,^{*8} T. Tomai,^{*17,*3} L. Trache,^{*6} D. Tudor,^{*6,*3} T. Uesaka,^{*3} H. Yamada,^{*17} M. Yasuda,^{*17} K. Yoneda,^{*3} K. Yoshida,^{*3}

J. Zenihiro,^{*3} and N. Zhang^{*22,*2}

Recent nuclear physics studies are increasingly focused on the region far from the valley of stability, thereby leading to an increase in the intensity of available exotic isotopes. We started a $program^{1}$ at the RIKEN Radioactive Isotope Beam Factory with the objective of measuring the spin-isospin responses of light nuclei along the neutron drip line. There are no available data on nuclear collectivity (giant resonances) on any drip-line nucleus.

In the SAMURAI30 experiment, we studied the most basic nuclear collectivity, the Gamow-Teller (GT) giant resonance, in ¹¹Li (at 181 MeV/nucleon) and ¹⁴Be (at 198 MeV/nucleon) nuclei. The charge-exchange (CE) (p, n) reactions in inverse kinematics are efficient tools for extracting the B(GT) strengths of unstable isotopes, up to high excitation energies, without Q-value limitation.²⁾ The unique setup of the Particle Analyzer Neutron Detector Of Real-time Acquisition (PANDORA)³⁾ lowenergy neutron counter + SAMURAI magnetic spectrometer,⁴⁾ together with a thick liquid hydrogen target allowed us to perform such measurements with high luminosity and low background. In our previous study on 132 Sn, we verified that with this setup, we can extract the strength distribution of isovector spin-flip giant resonances in unstable nuclei with quality comparable to those on stable nuclei. $^{5)}$

In the ${}^{11}\text{Li}(p, n){}^{11}\text{Be}$ reaction, we identified clear kine-

- Center for Nuclear Study, University of Tokyo
- *3 **RIKEN** Nishina Center
- *4 School of Physics, Peking University
- *5 Department of Physics, Kyushu University
- *6 Horia Hulubei Nat. Inst. of Phys. and Nucl. Eng.
- *7Inst. de Physique Nuclaire, Univ. Paris-Saclay
- *8 Department of Physics, Rikkyo University *9
- LPC CAEN
- *10Department of Physics, Ewha Womans University
- *11ATOMKI, Institute for Nuclear Research, HAS
- *12 Department of Physics, Toho University
- *¹³ University of Groningen
- *¹⁴ GSI Helmholtzzentrum für Schwerionenforschung GmbH
- $^{\ast 15}$ Department of Physics, Korea University
- *¹⁶ Department of Physics, Tohoku University
- *¹⁷ Dept. of Physics, Tokyo Institute of Technology
- *¹⁸ Department of Physics, University of Tokyo
- *¹⁹ Dépt. Physique Nucl., CEA, Univ. Paris-Saclay
- $^{\ast 20}$ Dept. of Physics, Saitama University, Saitama
- *²¹ National Institute of Radiological Sciences (NIRS)
- *²² Institute of Modern Physics, Chinese Acad. of Sci.

Fig. 1. Excitation energy spectrum in the $6^{\circ}-8^{\circ}$ center-ofmass system for ${}^{8}\text{Li} + \text{t}$.

matical correlations⁶) between the neutron energy and laboratory scattering angle for more than ten different decay channels of ¹¹Be: ${}^{10}\text{Be} + n$, ${}^{9}\text{Be} + 2n$, ${}^{9}\text{Li} + p + n$, ⁸Li + p + 2n, ⁹Li + d, ⁸Li + t, ⁸Li + d + n, ⁷Li + t + n, ⁷Li + d + 2n, ⁶Li + t + 2n, α + ⁶He + n and 2 α + 3n.

The excitation-energy spectra up to approximately 40 MeV have been reconstructed. The background subtraction and acceptance correction are performed. As an example, Fig. 1 presents the excitation energy spectrum in the daughter nucleus ${}^{11}\text{Be}$ for the ${}^{8}\text{Li} + t$ decay channel for $\theta_{C.M.} = 6^{\circ} - 8^{\circ}$. A forward scattering peak in the $0^{\circ}-10^{\circ}$ center-of-mass system indicates a strong GT transition in all decay channels at approximately 19 MeV, below the Isobaric analogue state, 7 which agrees well with previous beta-decay studies.⁸⁾

References

- 1) L. Stuhl et al., RIKEN Accel. Prog. Rep. 48, 54 (2015).
- 2) M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011).
- 3) L. Stuhl et al., Nucl. Instrum. Methods Phys. Res. A 866, 164(2017).
- 4) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B **317**, 294 (2013).
- 5) J. Yasuda et al., Phys. Rev. Lett. 121, 132501 (2018).
- 6) L. Stuhl et al., Nucl. Instrum. Methods Phys. Res. B 463, 189 (2020).
- T. Teranishi et al., Phys. Lett. B 407, 110 (1997). 7)
- R. Raabe et al., Phys. Rev. Lett. 101, 212501 (2008). 8)