Quarternion-spin-isospin model for the standard-model parameters

Y. Akiba *1

In the preceding article, ${ }^{1)}$ empirical formulas of the parameters of the standard model (SM) of particle physics are presented. Here, I report a model that can produce these formulas. We call the model the "Quarternion-spin-isospin model" since it is based on operators that are products of the quarternion bases I^{μ}, spin operator σ^{ν}, and (weak) isospin operator τ^{a}. In the model, the Planck time $\tau_{p l}=1 / M_{p l}=$ $5.3912 \times 10^{-44} \mathrm{~s}$ is the minimum duration of time. A term of the Lagrangian density \mathcal{L}_{i} of a particle is an "oriented product" of 48 "normalized primordial actions" (NPAs) that are selected from the following 64 NPAs.

$$
\left\{\frac{I^{\mu} \sigma^{\nu} \tau^{a}}{6 \pi}, \frac{i}{3 \pi}, \frac{\tau^{3}}{3 \pi}, \frac{I^{c} \tau^{3}}{3 \pi}, \frac{-I^{c}}{2 \pi}, \frac{-i}{\pi}, i, I^{c},-2,2,1\right\}
$$

The oriented product operator \vee has the following reduction rules:

$$
\begin{aligned}
& \hat{\alpha} \vee \hat{\beta}= \begin{cases}\hat{\alpha} \hat{\beta}, & (\text { if } \hat{\alpha} \hat{\beta}=-\hat{\beta} \hat{\alpha}) \\
0, & (\text { if } \hat{\alpha} \hat{\beta}=\hat{\beta} \hat{\alpha})\end{cases} \\
& \hat{\alpha} \vee \hat{\beta} \vee \hat{\gamma}= \begin{cases}\hat{\alpha} \hat{\beta} \hat{\gamma}, & \text { (if } \hat{\alpha} \hat{\beta}=-\hat{\beta} \hat{\alpha}, \hat{\beta} \hat{\gamma}=-\hat{\gamma} \hat{\beta}, \hat{\gamma} \hat{\alpha}=-\hat{\alpha} \hat{\gamma}) \\
0, & \text { (otherwise) }\end{cases} \\
& s \vee \hat{\alpha}=s \hat{\alpha}, s_{1} \vee s_{2}=0, \hat{\alpha} \vee s \vee \hat{\beta}=s \hat{\alpha} \hat{\beta} .
\end{aligned}
$$

Here, s is a scalar. Following these rules, a 48 \vee product of NPAs, $d S=\hat{s}_{i_{1}} \vee \cdots \vee \hat{s}_{i_{48}}$, is reduced to a value in the form of $\pm m(6 \pi)^{n} i^{s}\left(\tau^{3}\right)^{s^{\prime}} \epsilon_{0}$, where $\epsilon_{0}=2 \times(6 \pi)^{-48}, s \in\{0,1\}, s^{\prime} \in\{0,1\}$, $m \in\{1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 18, \pm 24\}$, and $n \in$ $\{0,1,2\}$. The values of s, s^{\prime}, n, and m are determined by the selection of the subset $\left\{\hat{s}_{1}, \cdots, \hat{s}_{48}\right\}$ from $S_{N P A}$. Due to the calculation rules of the \vee product, only a limited number of 48 products have a non-zero reduced value. We call these non-zero 48 product the "elementary action" (EA). An EA corresponds to a term of Lagrangian density \mathcal{L} of an elementary particle, e.g., the electron.

We found 48 EAs that correspond to the elementary particles of the SM, which are summarized in Table 1 . In the table, U and D denote U-type and D-type quarks, respectively, when their masses are ignored.

The mass of particles can be obtained from Table I. In the following, I show how the mass formula of the electron can be obtained from the table as an example.
The Lagrangian of the electron is a sum of three EAs.

$$
\hat{\mathcal{L}}_{e}=4(6 \pi)^{2} i \epsilon_{0} \tau^{3}+i \epsilon_{0} i \tau^{3}+3 \epsilon_{0}
$$

Each EA can then be written as a product of the following "operators."

[^0]Table 1. Elementary actions.

$$
\begin{aligned}
& \hat{\partial}_{16}=\epsilon_{0}^{1 / 3}\left(1+i \sigma^{1}+i \sigma^{2}+i \sigma^{3}\right) \\
& \hat{\psi}_{15}^{+}=\left|\psi_{15}\right| \tau^{+}\left(u_{1}^{+} \sigma^{1}+u_{2}^{+} \sigma^{2}+u_{3}^{+} \sigma^{3}\right) \\
& \hat{\psi}_{15}^{-}=\left|\psi_{15}\right| \tau^{-}\left(u_{1}^{-} \sigma^{1}+u_{2}^{-} \sigma^{2}+u_{3}^{-} \sigma^{3}\right) \\
& \hat{A}_{18}=(6 \pi)^{-2} \epsilon_{0}^{1 / 3}\left(1+i \sigma^{1}+i \sigma^{2}+i \sigma^{3}\right)
\end{aligned}
$$

Here, $\left|\psi_{15}\right|=(6 \pi) \epsilon_{0}^{1 / 3}$ and the 3 D vectors $u^{+}=$ $\left(u_{1}^{+}, u_{2}^{+}, u_{3}^{+}\right)$and $u^{-}=\left(u_{1}^{-}, u_{2}^{-}, u_{3}^{-}\right)$satisfy $u^{+} \times u^{-}=$ $(-1,-1,-1)$ and $u^{+} \cdot u^{-}=1$. The operators $\hat{\partial}_{16}$ and $\hat{\psi}_{15}^{-}$correspond to the differential operator $i \sigma^{\mu} \partial_{\mu}$ and the electron field operator, and ψ_{15}^{+}corresponds to its conjugate. One can show

$$
\begin{aligned}
\hat{\mathcal{L}}_{e} & =\left(1+\frac{1}{4} \frac{1}{(6 \pi)^{2}}\right)\left(\hat{\partial}_{16} \hat{\psi}_{15}^{+} \hat{\psi}_{15}^{-}+\mu_{e}\left|\psi_{15}\right|^{2}\right) \\
\mu_{e} & =\left(1+\frac{1}{4} \frac{1}{(6 \pi)^{2}}\right)^{-1} \frac{1}{12 \pi^{2}} \epsilon_{0}^{1 / 3}
\end{aligned}
$$

Similarly, all of the 22 formulas of the SM parameters presented in the preceding article are derived. The model also predicts 100% CP violation in the neutrino sector and that the product of the Hubble constant H_{0} and the Planck time $t_{p l}$ is $H_{0} t_{p l}=2 \times(6 \pi)^{-48}$.

Reference

1) Y. Akiba, in this report.

[^0]: *1 RIKEN Nishina Center

