Empirical formulas for the standard-model parameters

Y. Akiba, ${ }^{* 1}$

In my previous article, ${ }^{1)}$ I reported empirical formulas of the masses of the elementary particles in the standard model (SM), namely, charged leptons (e, μ, τ), quarks (t, c, u, b, s, d), gauge bosons (Z, W), and the Higgs boson (H). Each of these formulas yields the ratio $\mu_{p} / M_{p l}$ of the mass of particle p to the Planck mass $M_{p l}=1.220910 \pm 0.000029 \times 10^{19} \mathrm{GeV}$ in terms of a dimensionless constant $\epsilon_{0}=2 \times(6 \pi)^{-48}$. There is no adjustable parameter in the formulas.

Here, I report similar formulas for the mass of neutrinos, Cabbibo-Kobayashi-Masukawa (CKM) quark mixing parameters, and neutrino mixing parameters. Table 1 lists mass formulas including neutrions. The neutrino masses calculated from the formulas are $m_{1}=$ $2.70 \times 10^{-3} \mathrm{eV}, m_{2}=9.01 \times 10^{-3} \mathrm{eV}$, and $m_{3}=$ $5.09 \times 10^{-2} \mathrm{eV}$. Table 2 shows the formulas for the CKM matrix elements and their calculated values. Table 3 lists the formulas of the neutrino mixing parame-

Table 1. Formulas for the masses of the SM particles.

particle p	formula ($\mu_{p}=m_{p} / M_{\mathrm{pl}}$)
e	$\frac{1}{12 \pi^{2}} \epsilon_{0}^{1 / 3}\left(1+\frac{1}{4} \frac{1}{(6 \pi)^{2}}\right)^{-}$
μ	$\frac{3}{2} \epsilon_{0}^{1 / 3}\left(1-\frac{3}{6 \pi}+\frac{27}{4} \frac{1}{(6 \pi)^{2}}\right)^{-1}$
τ	$9 \pi \epsilon_{0}^{1 / 3}\left(1-\frac{3}{4} \frac{1}{6 \pi}+\frac{5}{4} \frac{1}{(6 \pi)^{2}}\right)^{-1}$
ν_{1}	$\frac{2}{3} \epsilon_{0}^{1 / 2}\left(1+\frac{1}{6 \pi}\right)^{-1}$
ν_{2}	$2 \epsilon_{0}^{1 / 2}\left(1-\frac{1}{6 \pi}\right)^{-1}$
ν_{3}	$4 \pi \epsilon_{0}^{1 / 2}\left(1+\frac{1}{6 \pi}\right)^{-1}$
t	$8(6 \pi)^{2} \epsilon_{0}^{1 / 3}$
c	$12 \epsilon_{0}^{1 / 3}$
u	$8(6 \pi)^{-2} \epsilon_{0}^{1 / 3}$
b	$3(6 \pi) \epsilon_{0}^{1 / 3}\left(1+\frac{3}{2} \frac{1}{6 \pi}+\frac{27}{4} \frac{1}{(6 \pi)^{2}}\right)^{-1}$
d	$(6 \pi)^{-1} \epsilon_{0}^{1 / 3}\left(1+\frac{1}{6 \pi}\right)^{-1}$
Z	$\frac{1}{\left(8 \pi^{2}\right)} \epsilon_{0}^{1 / 4}\left(1+\frac{1}{12} \frac{1}{6 \pi}+\frac{1}{12} \frac{1}{(6 \pi)^{2}}\right)^{-1 / 2}$
W	$\frac{2^{-1 / 4}}{\left(8 \pi^{2}\right.} \epsilon_{0}^{1 / 4}\left(1-\frac{3}{2} \frac{1}{6 \pi}-\frac{9}{4} \frac{1}{(6 \pi)^{2}}\right)^{-1 / 2}$
H	$\frac{2^{1 / 2}}{8 \pi^{2}} \epsilon_{0}^{1 / 4}\left(1+\frac{3}{2} \frac{1}{6 \pi}-\frac{9}{2} \frac{1}{(6 \pi)^{2}}\right)^{-1 / 2}$

[^0]Table 2. Formulas of the CKM matrix elements $V_{u s}, V_{c b}$, $V_{u b}$, and the CP-violation parameter $\bar{\eta}$.

	formula	calculated
$V_{u s}$	$\left(\frac{1}{6 \pi}\left(1+\frac{1}{6 \pi}\right)^{-1}\right)^{1 / 2}$	0.22445
$V_{c b}$	$\left(\frac{2}{3}\right)^{1 / 2} \frac{1}{6 \pi}$	0.04332
$V_{u b}$	$\frac{4}{3} \frac{1}{(6 \pi)^{2}}$	0.003753
$\bar{\eta}$	$\left(1+\frac{3}{2} \frac{1}{6 \pi}+\frac{27}{4} \frac{1}{(6 \pi)^{2}}\right) \frac{1}{\pi}$	0.3497

Table 3. Formulas of the neutrino-mixing matrix.

	formula	calculated
s_{12}	$\left(\frac{1}{3}\left(1-\frac{1}{6 \pi}\right)\left(1+\frac{1}{6 \pi}\right)^{-1}\right)^{1 / 2}$	0.547
s_{23}	$\left(\frac{3}{2 \pi}\left(1+\frac{1}{6 \pi}\right)\left(1-\frac{1}{6 \pi}\right)^{-1}\right)^{1 / 2}$	0.729
s_{13}	$\left(\frac{1}{12 \pi}\right)^{1 / 2}\left(1-\frac{1}{6 \pi}\right)\left(1+\frac{1}{6 \pi}\right)^{-1}$	0.146

ters and their calculated values. The values calculated from these formulas all agree with experimental data within the uncertainty of the data.

There are 25 free parameters in the SM. These formulas yield 22 out of the 25 parameters. The remaining 3 parameters are the fine structure constant α, the strong coupling constant α_{s}, and the neutrino CP violation parameter $\delta_{C P}$. Both α and α_{s} are scale dependent, and $\delta_{C P}$ is the only unmeasured parameter in the SM.

Note that the value of ϵ_{0} is consistent with the product of the Hubble constant H_{0} and the Planck time $t_{p l}=1 / M_{p l}$:

$$
\begin{aligned}
& H_{0} \times t_{p l}=(1.211 \pm 0.014) \times 10^{-61} \\
& \epsilon_{0} \equiv 2 \times(6 \pi)^{-48}=1.220608 \times 10^{-61}
\end{aligned}
$$

Here, the Wilkinson Microwave Anisotropy Prob (WMAP) nine-year value of H_{0} is used. This suggests that the masses of elementary particles are related to the expansion of spacetime.
A model to explain these formulae is reported in the next article, ${ }^{2)}$ and implications to gravity and cosmology are reported in the article appearing after that. ${ }^{3)}$

References

1) Y. Akiba, Accel. Prog. Rep. 52, 98 (2019).
2) Y. Akiba, in this report.
3) Y. Akiba, in this report.

[^0]: *1 RIKEN Nishina Center

