Half-life determination of nuclear excited states of 229 Th by the coincidence measurement between α particles and γ rays from 233 U

Y. Shigekawa,^{*1,*2} A. Yamaguchi,^{*3} K. Suzuki,^{*4} H. Haba,^{*1} T. Hiraki,^{*4} H. Kikunaga,^{*5} T. Masuda,^{*4} S. Nishimura,^{*1} N. Sasao,^{*4} A. Yoshimi,^{*4} and K. Yoshimura^{*4}

Studying the nuclear structure of ²²⁹Th is important in that reflection-symmetric and reflection-asymmetric shapes are expected to coexist¹⁾ and the first nuclear excited isomeric state of ²²⁹Th (^{229m}Th) has an extremely low energy of 8.3 eV,²⁾ which would enable the development of nuclear laser spectroscopy and an ultraprecise nuclear clock. In this study, we measured the half-lives of nuclear excited states of ²²⁹Th, populated through the alpha decay of ²³³U, for further understanding of the nuclear properties of ²²⁹Th. This work was also aimed at determining the half-life of the 29.2-keV state (Fig. 1). This half-life was one of the key parameters for exciting ²²⁹Th from the ground state to the 29.2-keV state with synchrotron radiation to actively produce ^{229m}Th, which was recently realized by our group.³⁾

For the half-life determination, we performed a coincidence measurement between α particles and γ rays from a ²³³U source prepared by electrodeposition. The ²³³U source was placed inside a vacuum chamber enclosed by 5-cm Pb blocks for background γ -ray reduction. Emitted α particles from the source were measured with a passivated implanted planar silicon detector mounted inside the chamber, and γ rays that were emitted from the source and passed through a polyimide window out of the vacuum were measured with a LaBr₃(Ce) scintillator and photomultiplier. After amplification, α -particle

Fig. 1. Excited states of 229 Th the half-lives of which were determined, and α and γ transitions used for determining the half-lives (unit: keV).

*1 RIKEN Nishina Center

- ^{*2} Graduate School of Science, Osaka University
- *³ Quantum Metrology Laboratory, RIKEN
- *4 Research Institute for Interdisciplinary Science, Okayama University

Fig. 2. Time spectrum of γ -ray signals following α -particle signals for 4783.5-keV α particles and 42.4-keV γ rays (histogram). A single exponential decay function convoluted with a Gaussian function is fitted to the data (curve).

and γ -ray signals were recorded with Computer-Aided Measurement And Control (CAMAC) modules to obtain time spectra of γ -ray signals following α -particle signals for each combination of α -particle and γ -ray energies.

Figure 2 shows a time spectrum for 4783.5-keV α particles and 42.4-keV γ rays. The half-life obtained from the fitting of a single exponential decay function convoluted with a Gaussian function was almost the same as the reference value $(172(6) \text{ ps}).^4)$ From a time spectrum for 4783.5-keV α particles and 29.2-keV γ rays, we obtained the half-life of the 29.2-keV state, which is consistent with that obtained from our synchrotron excitation of 229 Th (82(4) ps).³⁾ These coincidences with the previous results indicate that our experiments and data analysis were correctly performed. The half-life of the 97.1-keV state was obtained from γ rays of 54.7 and 97.1 keV detected in coincidence with 4729-keV alpha particles. The obtained half-life was seemingly shorter than the reference value (147(12) ps).⁴⁾ This may be because our measurement has better and time resolutions than the previous measurement.⁴⁾

We could clearly observe the peak of 66.1-keV γ rays by gating the γ -ray spectrum with α particles of approximately 4664 keV, which allowed us to obtain the half-life of the 163.2-keV state for the first time. We will continue detailed analysis to precisely determine each halflife and discuss the nuclear properties of ²²⁹Th based on the half-lives determined in this study.

References

- 1) G. A. Leander et al., Nucl. Phys. A 413, 375 (1984).
- 2) B. Seiferle *et al.*, Nature **573**, 243 (2019).
- 3) T. Masuda et al., Nature 573, 238 (2019).
- 4) H. Ton et al., Nucl. Phys. A 155, 245 (1970).