Correlated measurement of mass and decay of fusion evaporation products for ${}^{51}V+{}^{159}Tb$ reactions via MRTOF+ α -TOF detector

T. Niwase,^{*1,*2,*3} M. Wada,^{*3} P. Schury,^{*3} Y. Ito,^{*4} S. Kimura,^{*2} D. Kaji,^{*2} M. Rosenbusch,^{*2} Y. X. Watanabe,^{*3}
Y. Hirayama,^{*3} H. Miyatake,^{*3} J. Y. Moon,^{*9} H. Ishiyama,^{*2} K. Morimoto,^{*2} H. Haba,^{*2} T. Tanaka,^{*7}
S. Ishizawa,^{*5,*2,*3} P. Brionnet,^{*2} S. Iimura,^{*8,*2,*3} A. Takamine,^{*2} K. Morita,^{*1,*2} and H. Wollnik^{*6}

The SHE-Mass-II facility¹⁾ is a system with a multireflection time-of-flight mass spectrograph (MRTOF- MS^{2}) coupled with the gas-filled recoil ion separator GARIS-II³⁾ in the E6 experimental room for the mass measurement of fusion evaporation products, such as very low yield nuclei in the superheavy region.

Recently, we developed and installed a novel detector named α -TOF⁴⁾, which simultaneously records the time-of-flight (TOF) signal and successive α -decay. The α -TOF detector has the capability to significantly reduce the background level.

The experiment was performed using ${}^{51}V+{}^{159}Tb$ reactions. A ${}^{51}V$ beam was accelerated up to 6.0 MeV/nucleon by RRC. The beam energy on the target was reduced by an aluminum degrader to approximately 4.8 MeV/nucleon. A 460- μ g/cm²-thick ${}^{159}Tb$

Fig. 1. (a) Singles TOF spectrum. (b) TOF spectrum in coincidence with 207 Ra α -decays obtained using a time gate of 5s.

- *1 Department of Physics Kuushu University
- *1 Department of Physics, Kyushu University
- *² RIKEN Nishina Center *³ Weleo Nucleor Science Center
- *³ Wako Nuclear Science Center (WNSC), KEK
 *⁴ Japan Atomic Energy Agongy
- *4 Japan Atomic Energy Agency
 *5 Graduate School of Science at
- *5 Graduate School of Science and Engineering, Yamagata University
 *6 Department of Chemistry and Biochemistry, New Mexico
- State University
 *7 Department of Nuclear Physics. The Australian National University
- *7 Department of Nuclear Physics, The Australian National University
- *8 Department of Physics, Osaka University.
- *9 Institute for Basic Science

Fig. 2. Two-dimensional mapping of TOF versus correlated α -decay energies.

target was prepared by a sputtering method on a 3.0 μm Ti backing foil.

The fusion evaporation residues (ERs) were separated from the primary beam and efficiently transported using GARIS-II. After decelerating ERs using a Mylar foil, the ERs were captured in a cryogenic high-purity He gas catcher, and the thermalized ions were extracted by an RF-carpet and transported to the MRTOF-MS via multiple RF ion traps. We observed the $^{206, 207}$ Fr, $^{206, 207}$ Ra and 204 Rn isotopes extracted as doubly charged ions. In this measurement, we focused on $^{206, 207}$ Ra isotopes having relatively short half-lives, *i.e.*, $T_{1/2} = 240$ ms for 206 Ra and $T_{1/2} = 1.38$ s for 207 Ra. Figure 1 shows a part of the TOF spectrum at A =

Figure 1 shows a part of the TOF spectrum at A = 207. When we gated the ToF spectrum by the α -ray energy of 207 Ra with a coincident time of 5 s (3.5 half-lives), we clearly discriminated the decay-correlated TOF events (Fig. 1(b)).

Figure 2 shows a part of the two-dimensional spectrum for TOF and the correlated α -decay energies. From the correlation mapping, we obtained the information of TOF, as well as decay properties such as α -energy and decay time, atom by atom. Further analysis is in progress.

References

- 1) M. Wada et al., RIKEN Accl. Prog. Rep. 52, 136 (2019).
- P. Schury et al., Nucl. Instrum. Methods Phys. Res. B, 335, 39 (2014).
- D. Kaji et al., Nucl. Instrum. Methods Phys. Res. B, 317, 311 (2013).
- T. Niwase *et al.*, Nucl. Instrum. Methods Phys. Res. A, 953, 163198 (2020).