F. Boulay,^{*1,*2,*3} G. S. Simpson,^{*4} Y. Ichikawa,^{*2} S. Kisyov,^{*5} D. Bucurescu,^{*5} A. Takamine,^{*2} D. S. Ahn,^{*2} K. Asahi,^{*2,*6} H. Baba,^{*2} D. L. Balabanski,^{*2,*7} T. Egami,^{*2,*8} T. Fujita,^{*2,*9} N. Fukuda,^{*2} C. Funayama,^{*2,*6} T. Furukawa,^{*2,*10} G. Georgiev,^{*11} A. Gladkov,^{*2,*12} M. Hass,^{*13} K. Imamura,^{*2,*14} N. Inabe,^{*2} Y. Ishibashi,^{*2,*15} T. Kawaguchi,^{*2,*8} T. Kawamura,^{*9} W. Kim,^{*12} Y. Kobayashi,^{*16} S. Kojima,^{*2,*6} A. Kusoglu,^{*11,*17} R. Lozeva,^{*11} S. Momiyama,^{*18} I. Mukul,^{*13} M. Niikura,^{*18} H. Nishibata,^{*2,*9} T. Nishizaka,^{*2,*8} A. Odahara,^{*9} Y. Ohtomo,^{*2,*6} D. Ralet,^{*11} T. Sato,^{*2,*6} Y. Shimizu,^{*2} T. Sumikama,^{*2} H. Suzuki,^{*2} H. Takeda,^{*2} L. C. Tao,^{*2,*19} Y. Togano,^{*6} D. Tominaga,^{*2,*8} H. Ueno,^{*2} H. Yamazaki,^{*2} X. F. Yang,^{*20} and J. M. Daugas^{*1,*2}

A rapid change of the ground-state shape has been known to occur in neutron-rich Zr isotopes between the spherical ⁹⁸Zr and deformed ¹⁰⁰Zr.¹) This change has been described as a quantum phase transition (QPT) with the neutron number as a control parameter. The ⁹⁹Zr nucleus closest to the critical point of the QPT has an isomer (^{99m}Zr) with a spin parity of 7/2⁺ at 252 keV. The interaction between the $\pi g_{9/2}$ and $\nu g_{7/2}$ orbitals has been thought to be important for this QPT to occur,²) and the 7/2⁺ state may be key to this mechanism. In the present study, the nature of ^{99m}Zr was investigated through the magnetic moment.

The magnetic-moment measurement was performed at the BigRIPS at RIBF. ^{99m}Zr was produced and spinaligned via the abrasion-fission of a 345-MeV/nucleon ²³⁸U beam impinged on a 100- μ m-thick ⁹Be target. The *g*-factor of ^{99m}Zr was measured by the time-differential perturbed angular distribution (TDPAD) method. Figure 1 shows the R(t) ratio evaluated using γ rays of 130 keV and 122 keV by assuming pure *M*1 and *E*2 transitions, respectively, where a degree of spin-alignment of 1.5(4)% was extracted. The *g* factor of ^{99m}Zr determined was determined as |g| = 0.66(4); thus, the magnetic moment is $|\mu| = 2.31(14) \ \mu_{\rm N}$.

This value is far from the Schmidt value of $g_{free} = +0.425$ for the $\nu g_{7/2}$ orbital, indicating that ^{99m}Zr is not in a pure $(\nu g_{7/2})^1$ state. A comparison of the exper-

- [†] Condensed from the article in Phys. Rev. Lett. **124**, 112501 (2020)
- *1 CEA, DAM, DIF
- *² RIKEN Nishina Center
- *³ GANIL, CEA/DSM-CNRS/IN2P3
- *4 LPSC, CNRS/IN2P3, Université Joseph Fourier Grenoble 1 *5 IFIN-HH
- ^{*6} Department of Physics, Tokyo Institute of Technology
- *⁷ ELI-NP, IFIN-HH
- *8 Department of Advanced Sciences, Hosei University
- *9 Department of Physics, Osaka University
- *¹⁰ Department of Physics, Tokyo Metropolitan University
- ^{*11} IJCLab, CNRS/IN2P3, Université Paris-Saclay
- $^{\ast 12}$ Department of Physics, Kyungpook National University
- *¹³ Department of Particle Physics, Weizmann Institute
- *¹⁴ Department of Physics, Meiji University
- *¹⁵ Department of Physics, University of Tsukuba
- *16 Department of Informatics and Engineering, University of Electro-Communications
- *¹⁷ Department of Physics, Istanbul University
- *¹⁸ Department of Physics, University of Tokyo
- *¹⁹ School of Physics, Peking University
- *²⁰ Intsituut voor Kern-en Stralingsfysica, K. U. Leuven

Fig. 1. R(t) ratio associated with two γ rays.

Fig. 2. Comparison between experimental and theoretical values. The IBFM-1 calculation is based on the transition probabilities among the lowest three states and the magnetic moments of the lowest two states.³⁾

imental values with the results of the interacting bosonfermion model (IBFM-1), as shown in Fig. 2, suggests that this state is strongly mixed with the main composition being $\nu d_{5/2}$. Furthermore, we found that monopole single-particle evolution changes significantly with the appearance of collective modes.^{4,5)}

References

- 1) P. Campbell et al., Phys. Rev. Lett. 89, 082501 (2002).
- 2) P. Federman, S. Pittel, Phys. Lett. B 69, 385 (1977).
- 3) P. Spagnoletti et al., Phys. Rev. C 100, 014311 (2019).
- 4) Y. Tsunoda et al., Phys. Rev. C 89, 031301(R) (2014).
- 5) T. Togashi et al., Phys. Rev. Lett. 117, 172502 (2016).