H. F. Li,^{*1,*2,*3} S. Naimi,^{*1} D. Nagae,^{*1} Y. Abe,^{*1} F. Suzaki,^{*1} Y. Yamaguchi,^{*1} M. Wakasugi,^{*1} S. Omika,^{*4}

K. Inomata,^{*4} H. Arakawa,^{*4} S. Hosoi,^{*4} K. Nishimuro,^{*4} Y. Inada,^{*4} T. Kobayashi,^{*4} D. Kajiki,^{*4}

D. Hamakawa,^{*4} W. B. Dou,^{*4} T. Yamaguchi,^{*4} M. Mukai,^{*5} T. Moriguchi,^{*5} R. Kagesawa,^{*5} D. Kamioka,^{*5}

A. Ozawa,^{*5} S. Suzuki,^{*2} Z. Ge,^{*2} C. Y. Fu,^{*2} Q. Wang,^{*2} M. Wang,^{*2} S. Ota,^{*6} S. Michimasa,^{*6} N. Kitamura,^{*6}S. Masuoka,^{*6} D. S. Ahn,^{*1} H. Suzuki,^{*1} N. Fukuda,^{*1} H. Takeda,^{*1} Y. Shimizu,^{*1}

Y. A. Litvinov,^{*7} G. Lorusso,^{*8} and T. Uesaka^{*1}

The excitation energy of the isomeric state and the isomeric-to-ground state ratios are very important to understand the nuclear structure and reactions. Direct mass measurement can be used for measuring the excitation energy of the long-lived isomeric state and determining the isomeric-to-ground state ratio simultaneously. Rare RI Ring (R3) is an isochronous mass spectrometer in RIBF. The principle of the mass measurement at R3 is described by the following equation:

$$\frac{m_1}{q_1} = \frac{m_0}{q_0} \frac{T_1^{corr}}{T_0} = \frac{m_0}{q_0} \frac{1}{T_0} T_1 \sqrt{1 + \frac{1 - \left(\frac{T_0}{T_1}\right)^2}{\left(\frac{m_0/q_0}{B\rho_1}c\right)^2}}, \quad (1)$$

where T_1 and T_0 are the time-of-flight (TOF) of the nucleus of interest and reference nucleus, respectively, and $B\rho_1$ is the magnet rigidity of the nucleus of interest.¹⁾ The unknown mass m_1 is determined relative to the mass of the isochronous reference nucleus m_0 . B ρ tagging is performed at the momentum-dispersive focal plane F5 of BigRIPS by measuring the horizontal position with two parallel-plate avalanche counters (PPACs). The TOF of the nuclei in R3 was measured using the E-MCP detector²⁾ at S0 of SHARAQ and a plastic scintillator placed

Fig. 1. (a), (b) Correlations between T_1 and T_1^{corr} , respectively, and the F5 position for 128 Sn.

- *1 **RIKEN** Nishina Center
- *2 Institute of Modern Physics, Chinese Academy of Sciences
- *3 University of Chinese Academy of Sciences
- *4Department of Physics, Saitama University
- *5Institute of Physics, University of Tsukuba
- *6 Center for Nuclear Study, University of Tokyo
- *7 GSI Helmholtzzentrum für Schwerionenforschung
- *8 NPL, University of Surrey

Fig. 2. T_1^{corr} spectrum of ¹²⁸Sn; two Gaussian functions were used to fit the histogram.

behind R3.

In the autumn of 2018, the first mass measurement campaign was conducted at R3. To measure the mass of ¹²⁵Ag and ¹²⁴Pd, 3 neighbor isotones, ¹²⁶Cd, ¹²⁷In, and ¹²⁸Sn, were injected in R3 as reference nuclei to determine the mean $B\rho$ value of R3.³) The first isomeric state of ¹²⁸Sn, the excitation energy and half-life of which are about 2091.5 keV and 6.5 s,⁵⁾ respectively, was produced and observed during this experiment. The TOF in R3 for each particle was normalized to the same turn numbers⁴⁾ to determine T_1 . The correlation between the T_1 of 128 Sn and the F5 position is shown in Fig. 1(a). After event-wise correction with $B\rho$, T_1^{corr} 's dependence on the F5 position is shown in Fig. 1(b). The isomeric state and ground state of ¹²⁸Sn can be well resolved in the spectrum of T_1^{corr} , as shown in Fig. 2. The left peak is the ground state of 128 Sn, and the right one is the isomeric state. A function composed of the sum of two Gaussian functions was used to fit this spectrum.

The mass resolving power of R3 can be given by

$$R = m/\Delta m = T_1^{corr}/\Delta T_1^{corr},\tag{2}$$

which is derived from Eq. (1). The full width at half maximum of the achieved mass resolving power is about 125,000 from the ground-state peak. The isomeric-toground state ratio for 128 Sn is 1.8(4), which is determined by the integral values' ratio of the fitting functions.

References

- 1) A. Ozawa et al., Prog. Theor. Exp. Phys. 2012, 03C009 (2012).
- 2) Y. Abe et al., JPS Conf. Proc. 1, 013059 (2014).
- 3) S. Naimi et al., RIKEN Accel. Prog. Rep. 52, 102 (2019).
- 4) H. F. Li et al., RIKEN Accel. Prog. Rep. 52, 52 (2019).
- 5) G. Audi et al., Chin. Phys. C 41, 030001 (2017).