Isomeric-to-ground state ratio of ${ }^{128} \mathrm{Sn}$ measured by Rare RI Ring

H. F. Li, ${ }^{* 1, * 2, * 3}$ S. Naimi, ${ }^{* 1}$ D. Nagae, ${ }^{* 1}$ Y. Abe, ${ }^{* 1}$ F. Suzaki, ${ }^{* 1}$ Y. Yamaguchi, ${ }^{* 1}$ M. Wakasugi, ${ }^{* 1}$ S. Omika, ${ }^{* 4}$ K. Inomata, ${ }^{* 4}$ H. Arakawa, ${ }^{* 4}$ S. Hosoi, ${ }^{* 4}$ K. Nishimuro, ${ }^{* 4}$ Y. Inada, ${ }^{* 4}$ T. Kobayashi, ${ }^{* 4}$ D. Kajiki, ${ }^{* 4}$
D. Hamakawa, ${ }^{* 4}$ W. B. Dou, ${ }^{* 4}$ T. Yamaguchi, ${ }^{* 4}$ M. Mukai, ${ }^{* 5}$ T. Moriguchi, ${ }^{* 5}$ R. Kagesawa, ${ }^{* 5}$ D. Kamioka, ${ }^{* 5}$ A. Ozawa, ${ }^{* 5}$ S. Suzuki, ${ }^{* 2}$ Z. Ge, ${ }^{* 2}$ C. Y. Fu, ${ }^{* 2}$ Q. Wang, ${ }^{* 2}$ M. Wang, ${ }^{* 2}$ S. Ota, ${ }^{* 6}$ S. Michimasa, ${ }^{* 6}$ N. Kitamura, ${ }^{* 6}$ S. Masuoka, ${ }^{* 6}$ D. S. Ahn, ${ }^{* 1}$ H. Suzuki, ${ }^{* 1}$ N. Fukuda, ${ }^{* 1}$ H. Takeda, ${ }^{* 1}$ Y. Shimizu, ${ }^{* 1}$ Y. A. Litvinov, ${ }^{* 7}$ G. Lorusso, ${ }^{* 8}$ and T. Uesaka ${ }^{* 1}$

The excitation energy of the isomeric state and the isomeric-to-ground state ratios are very important to understand the nuclear structure and reactions. Direct mass measurement can be used for measuring the excitation energy of the long-lived isomeric state and determining the isomeric-to-ground state ratio simultaneously. Rare RI Ring (R3) is an isochronous mass spectrometer in RIBF. The principle of the mass measurement at R3 is described by the following equation:

$$
\begin{equation*}
\frac{m_{1}}{q_{1}}=\frac{m_{0}}{q_{0}} \frac{T_{1}^{c o r r}}{T_{0}}=\frac{m_{0}}{q_{0}} \frac{1}{T_{0}} T_{1} \sqrt{1+\frac{1-\left(\frac{T_{0}}{T_{1}}\right)^{2}}{\left(\frac{m_{0} / q_{0}}{B \rho_{1}} c\right)^{2}}} \tag{1}
\end{equation*}
$$

wherec T_{1} and T_{0} are the time-of-flight (TOF) of the nucleus of interest and reference nucleus, respectively, and $B \rho_{1}$ is the magnet rigidity of the nucleus of interest. ${ }^{1)}$ The unknown mass m_{1} is determined relative to the mass of the isochronous reference nucleus m_{0}. B ρ tagging is performed at the momentum-dispersive focal plane F5 of BigRIPS by measuring the horizontal position with two parallel-plate avalanche counters (PPACs). The TOF of the nuclei in R3 was measured using the E-MCP detector $^{2)}$ at S0 of SHARAQ and a plastic scintillator placed

Fig. 1. (a), (b) Correlations between T_{1} and $\mathrm{T}_{1}^{\text {corr }}$, respectively, and the F5 position for ${ }^{128} \mathrm{Sn}$.

[^0]

Fig. 2. $\mathrm{T}_{1}^{\text {corr }}$ spectrum of ${ }^{128} \mathrm{Sn}$; two Gaussian functions were used to fit the histogram.
behind R3.
In the autumn of 2018, the first mass measurement campaign was conducted at R3. To measure the mass of ${ }^{125} \mathrm{Ag}$ and ${ }^{124} \mathrm{Pd}, 3$ neighbor isotones, ${ }^{126} \mathrm{Cd},{ }^{127} \mathrm{In}$, and
${ }^{128} \mathrm{Sn}$, were injected in R3 as reference nuclei to determine the mean $\mathrm{B} \rho$ value of $\mathrm{R} 3 .{ }^{3)}$ The first isomeric state of ${ }^{128} \mathrm{Sn}$, the excitation energy and half-life of which are about 2091.5 keV and $6.5 \mathrm{~s},{ }^{5)}$ respectively, was produced and observed during this experiment. The TOF in R3 for each particle was normalized to the same turn numbers ${ }^{4)}$ to determine T_{1}. The correlation between the T_{1} of ${ }^{128} \mathrm{Sn}$ and the F5 position is shown in Fig. 1(a). After event-wise correction with $\mathrm{B} \rho, \mathrm{T}_{1}^{\text {corr }}$, s dependence on the F5 position is shown in Fig. 1(b). The isomeric state and ground state of ${ }^{128} \mathrm{Sn}$ can be well resolved in the spectrum of $\mathrm{T}_{1}^{\text {corr }}$, as shown in Fig. 2. The left peak is the ground state of ${ }^{128} \mathrm{Sn}$, and the right one is the isomeric state. A function composed of the sum of two Gaussian functions was used to fit this spectrum.

The mass resolving power of R3 can be given by

$$
\begin{equation*}
R=m / \Delta m=T_{1}^{\text {corr }} / \Delta T_{1}^{c o r r}, \tag{2}
\end{equation*}
$$

which is derived from Eq. (1). The full width at half maximum of the achieved mass resolving power is about 125,000 from the ground-state peak. The isomeric-toground state ratio for ${ }^{128} \mathrm{Sn}$ is $1.8(4)$, which is determined by the integral values' ratio of the fitting functions.

References

1) A. Ozawa et al., Prog. Theor. Exp. Phys. 2012, 03C009 (2012).
2) Y. Abe et al., JPS Conf. Proc. 1, 013059 (2014).
3) S. Naimi et al., RIKEN Accel. Prog. Rep. 52, 102 (2019).
4) H. F. Li et al., RIKEN Accel. Prog. Rep. 52, 52 (2019).
5) G. Audi et al., Chin. Phys. C 41, 030001 (2017).

[^0]: *1 RIKEN Nishina Center
 *2 Institute of Modern Physics, Chinese Academy of Sciences
 *3 University of Chinese Academy of Sciences
 *4 Department of Physics, Saitama University
 *5 Institute of Physics, University of Tsukuba
 *6 Center for Nuclear Study, University of Tokyo
 *7 GSI Helmholtzzentrum für Schwerionenforschung
 *8 NPL, University of Surrey

