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Total absorption gamma spectroscopy studies around 100Sn
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The region around 100Sn in the nuclide chart is con-
sidered of great interest. There are several reasons for
that: the shell structure of nuclei in the vicinity of the
Z = N = 50 doubly-closed shell, the possibility of study-
ing the heaviest accessible particle bound N = Z nu-
cleus 100Sn, the study of the quenching of the Gamow-
Teller resonance1,2) and the astrophysical relevance of
decays in this region for the rapid proton-capture pro-
cess (see3,4) and references therein).

Among the studied nuclei in the region, 100Sn plays a
key role. The beta decay of this nucleus and that of nu-
clei located south east of 100Sn is dominated by the sin-
gle particle Gamow-Teller transition of πg9/2 → νg7/2,
which is expected to be accesible inside the Qβ window
of the decay. This can provide a clear case for studying
the origin of the quenching of the Gamow-Teller strength
(B(GT)), a topic that has attracted considerable atten-
tion over many years.1,2,5,6)

For these kind of studies it is mandatory to use a tech-
nique that provides beta decay data that do not suffer
from the Pandemonium effect.7) This is the main moti-
vation of the NP1612-RIBF147 experiment in which we
used the total absorption spectrometer DTAS8) devel-
oped for DESPEC (FAIR) for measurements in combi-
nation with the implantation detector AIDA.9)

The beta decay of 100Sn has been previously stud-
ied using high resolution experiments at GSI and at
RIKEN,10,11) showing that it has the largest B(GT)
value measured in the nuclide chart. The limited statis-
tics and the probable presence of a low-energy gamma
ray not identified in previous experiments constrain the
reliability of the determination of the excitation energy
of the 1+ state in 100In, the state that should be mainly
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Fig. 1. Particle ID in BigRIPS from the experiment.

populated in the beta decay of 100Sn. The excitation
energy of this state, as well as the β end-point energy
of this transition is crucial for the determination of the
B(GT) value. The high efficiency of DTAS and its gran-
ularity can contribute to solve this question as shown by
Monte Carlo simulations. In this experiment we will
also have access to exotic decays that were not previ-
ously studied with the total absorption technique at the
Mass Separator (MSEP) at GSI because of the limited
production. In Fig. 1 we show the particle identifica-
tion in BigRIPS obtained during our experiment. Due
to technical problems we were able to run only 4 days
from a total of 10 approved days. The continuation of
the experiment is expected in 2020. The analysis of the
partial set of data is on going.
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