Shell evolution towards ⁶⁰Ca: First spectroscopy of ⁶²Ti[†]

M. L. Cortés, *1,*2 W. Rodriguez, *1,*3 P. Doornenbal, *1 A. Obertelli, *4,*5 J. D. Holt, *6 S. M. Lenzi, *7 J. Menéndez, *8 F. Nowacki, *9 K. Ogata, *10,*11 A. Poves, *12 T. R. Rodríguez, *12 A. Schwenk, *5,*13,*14

J. Simonis,^{*15} S. R. Stroberg,^{*6,*16} and K. Yoshida^{*17} for the SEASTAR2017 collaboration.

The study of N = 40 isotones can provide insight into the mechanisms governing shell evolution. Along this isotonic chain different behaviors are observed: ⁶⁸Ni shows a high $E(2_1^+)$ and a low $B(E2)\downarrow^{(1)}$. For Fe and Cr, a monotonous decrease of the $E(2_1^+)$ when approaching N = 40 has been observed,¹⁾ while the $E(2_1^+)$ of $^{58,\,60}$ Ti shows a moderate decrease towards $N = 40.^{2,3)}$ The very exotic ⁶⁰Ca, where the Ca isotopic chain meets the N = 40 isotones, is difficult to reach experimentally and only recently its existence has been established.⁴⁾ Theoretical calculations in the shell-model framework⁵⁾ concluded that quadrupole correlations in the N = 40isotopes give rise to deformed ground states dominated by intruder neutron orbits beyond the pf shell, leading to an island of inversion below ⁶⁸Ni. On the other hand, symmetry conserving configuration mixing calculations with the Gogny interaction predict a conservation of the N = 40 gap leading to spherical ⁶²Ti and ⁶⁰Ca.⁶⁾ In this work, the first spectroscopy of 62 Ti is presented.

A 345 MeV/nucleon beam of 70 Zn with an average intensity of 240 pnA was fragmented on a Be target to produce ⁶³V. The isotopes were identified using BigRIPS⁷) and delivered to the 151.3(13) mm long liquid hydrogen target of MINOS⁸) placed in front of the SAMURAI magnet. Outgoing ⁶²Ti fragments were identified using SAMURAI and associated detectors.⁹⁾ MINOS was surrounded by DALI2⁺, composed of 226 NaI(Tl) detectors.^{10,11})

Two peaks were clearly identified in the Doppler corrected $\gamma\text{-spectrum},$ and were found to be in coincidence. Using a 2-dimensional χ^2 minimization the energies of the transitions were deduced to be 683(10) keV and 823(20) keV, which were tentatively assigned to the $2_1^+ \rightarrow 0_{gs}^+$ and $4_1^+ \rightarrow 2_1^+$ transitions, respectively. The evolution of measured $E(2_1^+)$ and $E(4_1^+)$ energies for the

- t Condensed from Phys. Lett. B 800, 135071 (2020)
- *1 **RIKEN** Nishina Center *2
- INFN-Laboratori Nazionali di Legnaro *3
- Universidad Nacional de Colombia
- *4IRFU, CEA, Université Paris-Saclay
- *5 Institut für Kernphysik, Technische Universität Darmstadt *6 TRIUMF
- *7 Dipartimento di Fisica e Astronomia, Università di Padova
- *8 Center for Nuclear Study, The University of Tokyo
- *9 IPHC, CNRS/IN2P3, Université de Strasbourg
- *10 RCNP, Osaka University
- *11 Department of Physics, Osaka City University
- *12Departamento de Física Teórica, Universidad Autónoma de Madrid
- *¹³ EMMI, GSI Helmholtzzentrum für Schwerionenforschung
- *14 Max-Planck-Institut für Kernphysik
- $^{\ast 15}$ Institut für Kernphysik, Johannes Gutenberg-Universität
- *¹⁶ Department of Physics, University of Washington
- *17Advanced Science Research Center, Japan Atomic Energy Agency

Fig. 1. Systematics of $E(2_1^+)$ and $E(4_1^+)$ for even-even N =40 isotones, including the present measurement. The black, green, and purple lines represent LSSM, SCCM, and VS-IMSRG calculations, respectively.

N = 40 isotones between Ti and Ge¹) is presented in Fig. 1. The $E(2_1^+)$ and $E(4_1^+)$ of ⁶²Ti have a similar value than the ones measured for ⁶⁶Fe, higher than those of ⁶⁴Cr. This shows the first increase of $E(2_1^+)$ along the N = 40 isotones towards ⁶⁰Ca. Large Scale Shell Model (LSSM) calculations using the LNPS interaction reproduce very accurately the data, indicating that the island of inversion in this region extends down to ⁶⁰Ca. Symmetry conserving configuration mixing (SCCM) calculations using the Gogny D1S effective interaction predict $E(2_1^+)$ for ⁶⁴Cr and ⁶⁶Fe which lie very close to the LSSM predictions. However, for 62 Ti a larger increase of the $E(2_1^+)$ is obtained. For the $E(4_1^+)$ energies, the calculations overestimate the experimental values by about 500 keV, although the minimum value for ^{64}Cr is maintained. Ab initio valence-space in-medium similarity renormalization group (VS-IMSRG) calculations overestimate the $E(2_1^+)$ and $E(4_1^+)$ excitation energies in ⁶²Ti, ⁶⁴Cr, and ⁶⁶Fe, predicting all states as spherical.

References

- 1) http://www.nndc.bnl.gov/ensdf/.
- 2) H. Suzuki et al., Phys. Rev. C 88, 024326 (2013).
- 3) A. Gade et al., Phys. Rev. Lett. 112, 112503 (2014).
- 4) O. B. Tarasov et al., Phys. Rev. Lett. 121, 022501 (2018).
- 5) S. M. Lenzi et al., Phys. Rev. C 82, 054301 (2010).
- 6) T. R. Rodríguez et. al., Phys. Rev. C 93, 054316 (2016).
- 7) T. Kubo et al., Prog. Theor. Exp. Phys. 2012, (2012).
- 8) A. Obertelli et al., Eur. Phys. J. A 50, (2014).
- 9) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).
- 10) S. Takeuchi et al., Nucl. Instrum. Methods Phys. Res. A 763, 596 (2014).
- 11) I. Murray et al., RIKEN Accel. Prog. Rep. 51, 158 (2017).