Purification of slowed-down RI beam

T. Sumikama,^{*1} D. S. Ahn,^{*1} N. Fukuda,^{*1} N. Inabe,^{*1} T. Komatsubara,^{*1} K. Kusaka,^{*1} M. Ohtake,^{*1} H. Sakurai,^{*1} Y. Shimizu,^{*1} H. Suzuki,^{*1} H. Takeda,^{*1} Y. Yanagisawa,^{*1} K. Yoshida,^{*1} M. Dozono,^{*2} N. Imai,^{*2}

S. Michimasa,^{*2} R. Tsunoda,^{*1,*2} Y. X. Watanabe,^{*3} M. Hausmann,^{*4} and O. Tarasov^{*1,*5}

The purity of a slowed-down RI beam at the second stage of the BigRIPS separator¹⁾ is important for particle identification (PID) under the condition of a total rate of 10^5 pps or higher.²⁾ High-purity sloweddown RI beams are desirable for experiments at BigRIPS and the OEDO beamline.³⁾ A high-intensity purified slowed-down exotic RI beam (HIPSER) concept is proposed to obtain high-intensity and high-purity RI beams using two-stage separation with two thick wedge degraders before measurement using beamline detectors for PID. The HISPER concept consists of three technical components:

- (1) purification of the RI beam using the two-stage separation,
- (2) two-step momentum compression, and
- (3) transport of three charge states coupled with PID using a time-of-flight (TOF) measurement after the purification.

In this report, we focus on the RI-beam purification.

An experiment to verify the HIPSER concept was performed using a ¹⁰⁷Pd beam produced with the BigRIPS separator at RIKEN RIBF. The ¹⁰⁷Pd beams were separated at the first stage of BigRIPS using a

Fig. 1. Horizontal-position distributions of ¹⁰⁷Pd and its isotones at F3. The results of ¹⁰⁵Ru, ¹⁰⁶Rh, ¹⁰⁷Pd, ¹⁰⁸Ag, and ¹⁰⁹Cd are shown by the green-dashed, blackdashed, red-solid, black-solid, and green-solid lines, respectively.

*1 RIKEN Nishina Center

- $^{\ast 2}$ $\,$ Center for Nuclear Study, University of Tokyo
- *³ Wako Nuclear Science Center, KEK
- *4 FRIB, MSU
- *⁵ NSCL, MSU

Fig. 2. Same as Fig. 1 but for the positions at F7.

wedge degrader with a thickness of 4.5 mm at F1 and the F2 slit with a ±5-mm setting. The thickness-torange ratio (d/R) was 0.47. The energy was slowed down from 254 to 174 MeV/nucleon. The contaminants at F2 were isotones of ¹⁰⁷Pd, since the horizontal position x_{F2} of ¹⁰⁷Pd at F2 were the same as those of the isotones. Figure 1 shows x_{F3} distributions of ¹⁰⁵Ru, ¹⁰⁶Rh, ¹⁰⁷Pd, ¹⁰⁸Ag, and ¹⁰⁹Cd beams measured at F3. The positions at F2 and F3 show the relation, $x_{F3} = -x_{F2}$. The central values of the x_{F3} distribution for these RI beams were the same.

With a thicker wedge degrader at F5, the 107 Pd beam could be separated from its isotones.^{1,2)} The second wedge degrader at F5 had a thickness of 3.5 mm (d/R = 0.69). The F7 position $x_{\rm F7}$ of the 107 Pd beam was separated from the isotones, as shown in Fig. 2. By setting the F7 slit as $-10 \text{ mm} < x_{\rm F7} < +5 \text{ mm}$, the purity of 107 Pd was obtained as 32%. The beam energy between F5 and F7 was 78 MeV/nucleon. The TOF measurement for the three charge states was performed at the ZeroDegree spectrometer. The charge-state separation at the ZeroDegree spectrometer, influence of higher-order aberration, and beam-energy broadening due to energy-loss straggling will be investigated in a future analysis.

References

- T. Kubo, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003).
- T. Sumikama *et al.*, Nucl. Instrum. Methods Phys. Res. B **376**, 180 (2016).
- S. Michimasa *et al.*, Prog. Theor. Exp. Phys. **2019**, 043D01 (2019).