## Proton- and deuteron-induced reactions on $^{107}$ Pd and $^{93}$ Zr at 20–30 MeV/nucleon

M. Dozono,\*1 N. Imai,\*1 S. Michimasa,\*1 T. Sumikama,\*2 N. Chiga,\*2 S. Ota,\*1 O. Beliuskina,\*1 S. Hayakawa,\*1

K. Iribe,\*<sup>3</sup> C. Iwamoto,\*<sup>1</sup> S. Kawase,\*<sup>4</sup> K. Kawata,\*<sup>1</sup> N. Kitamura,\*<sup>1</sup> S. Masuoka,\*<sup>1</sup> K. Nakano,\*<sup>4</sup> P. Schrock,\*<sup>1</sup>

D. Suzuki,\*<sup>2</sup> R. Tsunoda,\*<sup>1</sup> K. Wimmer,\*<sup>5</sup> D. S. Ahn,\*<sup>2</sup> N. Fukuda,\*<sup>2</sup> E. Ideguchi,\*<sup>6</sup> K. Kusaka,\*<sup>2</sup> H. Miki,\*<sup>7</sup>

H. Miyatake,\*<sup>8</sup> D. Nagae,\*<sup>2</sup> M. Nakano,\*<sup>9</sup> S. Ohmika,\*<sup>2</sup> M. Ohtake,\*<sup>2</sup> H. Otsu,\*<sup>2</sup> H. J. Ong,\*<sup>6</sup> S. Sato,\*<sup>9</sup>

H. Shimizu,<sup>\*1</sup> Y. Shimizu,<sup>\*2</sup> H. Sakurai,<sup>\*2</sup> X. Sun,<sup>\*2</sup> H. Suzuki,<sup>\*2</sup> M. Takaki,<sup>\*1</sup> H. Takeda,<sup>\*2</sup> S. Takeuchi,<sup>\*7</sup>

T. Teranishi,<sup>\*3</sup> H. Wang,<sup>\*2</sup> Y. Watanabe,<sup>\*4</sup> Y. X. Watanabe,<sup>\*8</sup> H. Yamada,<sup>\*7</sup> H. Yamaguchi,<sup>\*1</sup> R. Yanagihara,<sup>\*6</sup> L. Yang,<sup>\*1</sup> Y. Yanagisawa,<sup>\*2</sup> K. Yoshida,<sup>\*2</sup> and S. Shimoura<sup>\*1</sup>

The nuclear transmutation of long-lived fission products (LLFPs), which are produced in nuclear reactors, is one of the candidate techniques for the reduction and/or reuse of LLFPs. To design optimum pathways for the transmutation process, several nuclear reactions have been studied by using LLFPs as secondary beams. The studies indicate that proton- and/or deuteron-induced spallation reactions at intermediate energies (100-200 MeV/nucleon) are sufficiently effective for the LLFP transmutation.<sup>1-3</sup> We note that protons/deuterons lose their energies in materials; therefore, measurements at lower reaction energies are definitely desired for the application of transmutation. In this study, the isotopic production cross sections of proton- and deuteron-induced reactions on  $^{107}\mathrm{Pd}$  and  $^{93}$ Zr at 20–30 MeV/nucleon were measured under an inverse kinematics condition. The experiment was conducted at the OEDO<sup>4</sup>) beamline at RIBF. This was the first physics experiment using OEDO. Detailed descriptions of the setup and procedure can be found in Ref. 5).

Figure 1 shows the preliminary results for the isotopic production cross sections of the proton-induced reactions on  $^{107}$ Pd. Considering the energy loss of the beam in the target, the measured cross sections are the ones averaged over 25–30 MeV/nucleon. The sensitivity threshold of the measurement was 5 mb because of statistics. We determined the cross sections for five isotopes ( $^{107-105}$ Ag and  $^{106, 105}$ Pd).

The results show significant production of Ag isotopes; about 70% of the total cross section is exhausted by Ag isotopes. This can be understood by the compoundnuclear process:  ${}^{107}\text{Pd} + p \rightarrow {}^{108}\text{Ag}^*$ . The Ag isotopes are probably produced by the evaporation of neutrons from the highly excited compound nucleus  ${}^{108}\text{Ag}^*$ . Actually, the trend is completely different from the highenergy spallation reaction case,<sup>2</sup>) in which the contribution of Ag isotopes is less than 10%.

The curves in Fig. 1 show the excitation functions

- \*<sup>1</sup> Center for Nuclear Study, the University of Tokyo
- \*<sup>2</sup> RIKEN Nishina Center
- <sup>\*3</sup> Department of Physics, Kyushu University
- \*4 Department of Advanced Energy Engineering Science, Kyushu University
- <sup>\*5</sup> Department of Physics, the University of Tokyo
- \*6 Research Center for Nuclear Physics, Osaka University
- <sup>\*7</sup> Department of Physics, Tokyo Institute of Technology
- \*8 WNSC, IPNS, KEK
- \*9 Department of Physics, Rikkyo University

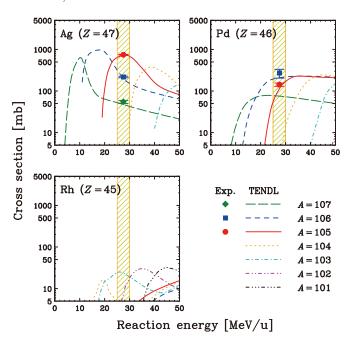



Fig. 1. Isotopic production cross sections of the proton-induced reactions on  $^{107}{\rm Pd}.$ 

evaluated by TENDL-2017.<sup>6)</sup> The cross sections of Ag and Pd isotopes were reasonably reproduced by the evaluation. On the other hand, the cross sections of <sup>103, 102</sup>Rh were considerably overestimated; TENDL predicted significant values for <sup>103, 102</sup>Rh, but they were not detected in the experiment.

The present data, as well as higher-energy data, would provide an effective guideline for a possible solution of LLFP transmutation. The results will be finalized soon, and the preparation for publication is in progress. Regarding the <sup>93</sup>Zr data, the analysis for particle identification is ongoing.

This work was funded by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

## References

- 1) H. Wang et al., Phys. Lett. B 754, 104 (2016).
- H. Wang *et al.*, Prog. Theor. Exp. Phys. **2017**, 021D01 (2017).
- S. Kawase *et al.*, Prog. Theor. Exp. Phys. **2017**, 093D03 (2017).
- 4) S. Michimasa et al., Prog. Theor. Exp. Phys., accepted.
- 5) M. Dozono et al., RIKEN Accel. Prog. Rep. 51, 99 (2018).
- 6) A. J. Koning et al., Nucl. Data Sheets 113, 2841 (2012).