G. Simpson,^{*1} J. Keatings,^{*2} A. Jungclaus,^{*3} J. Taprogge,^{*4} S. Nishimura,^{*5} P. Doornenbal,^{*5} G. Lorusso,^{*5} P. -A. Söderström,^{*5} T. Sumikama,^{*5} J. Wu,^{*5} Z. Y. Xu,^{*5} T. Isobe,^{*5} H. Sakurai,^{*5} and

the EURICA RIBF-85 collaboration^{*5}

The experimental study of single valence particle (hole) nuclei provides crucial experimental data for nuclear structure studies. In particular the energies of low-lying levels in these nuclei can provide the effective single-particle (hole) energies used in shell-model calculations.¹⁾ In experiment RIBF-85,^{1,2)}, which was part of the EURICA campaign, the single valence neutron nucleus ¹³³Sn was studied following the β - and $\beta\text{-n}$ decay of $^{133,\,134}\mathrm{In}$ parent nuclei. This has allowed the energies of several single-particle states to be verified and the γ decays of new levels observed. To date all single-particle states in the N = 82-126valence shell have been directly experimentally identified in ¹³³Sn, except the $\nu i_{13/2}$ one.³⁻⁵⁾ Furthermore the recent report of enhanced quadrupole and octupole strength in ¹³²Sn⁶) allows searches for more complex states to be performed. The co-existence of spherical single-particle and collective states appears to be a ubiquitous feature of the nuclear landscape.

The high Q_{β} and $Q_{\beta-n}$ values of 14135(60) keV and 11110(270) keV for the β and β -n decays of ^{133, 134}In, respectively, make them ideal for studying a wide range of states in ¹³³Sn. The differing spins of the ground states of these nuclei [(9/2⁺) and (4⁻ - 7⁻)] mean that levels with different spin ranges should be populated.

The experimental γ -ray spectrum obtained following the decay of selected and implanted ¹³³In ions is presented in Fig. 1. Many transitions previously assigned to ¹³²Sn are observed.⁷⁾ A new γ decay of energy 1779 keV is assigned to ¹³³Sn as this transition was observed following both the β decay of ¹³³In and the β -n decay of ¹³⁴In. The 1561-keV transition, previously reported in several experiments is confirmed.³⁻⁵⁾ However, no evidence was found for the 513- and 854keV γ decays of the $\nu p_{3/2}$ and $\nu p_{1/2}$ states from parent ¹³³In nuclei.⁴⁾ This shows that ¹³³In was much more strongly populated in its $\pi g_{9/2}^{-1}$ ground state, than the $\pi p_{1/2}^{-1}$ long-lived isomer. The γ decay of the 854-keV $\nu p_{3/2}$ state was however observed following the β -n decay of ¹³⁴In.

The 1561-keV transition receives more than one third of the total feeding intensity following the β -n decay of ¹³⁴In. The weak population of the 1779-keV state in ¹³³Sn following β -n decay means that it may have a positive parity.

- *4 Departamento de Física Téorica,Universidad Autonoma de Madrid
- *5 RIKEN Nishina Center

200 γ-rays emitted from ¹³³In 375 * parent nuclei 150 + β decay * β-n decay Counts per keV 100 4041 double escape single escape 5(<u>4</u> 4351 **1**041 2000 2500 Energy (keV) 500 1000 1500 3000 3500 4000 4500

Fig. 1. γ -ray spectrum obtained from the β -decay of ¹³³In in the current work.

Octupole excitations are amongst the first few excited states in $^{132}{\rm Sn}^{7)}$ and have recently been shown to possess enhanced collectivity.⁶⁾ As the 1779-keV state has not been populated in transfer reaction experiments then its isospin quantum number is probably different to that of the neighboring states^{4,5,8)} The 1779-keV state probably has a $\nu f_{7/2}^1 \otimes 3^-$ configuration and is lowered in energy due to an attractive protonneutron interaction.

Following the β decay of ¹³³In the log ft value for the 1779-keV state was measured to be 6.9(1). This is compatible with either a first-forbidden transition or a hindered allowed Fermi one. Here the hindrance occurs due to $\Delta T \neq 0$ between the initial and final states, which impedes Fermi transitions. This underlines the complex nature of the occupole state, which contains multiple particle-hole excitations.

Evidence of coexisting single-particle and octupole states at an energy of ~ 1.6 MeV in ¹³³Sn is presented. It is a theoretical challenge to reproduce these states.

References

- 1) J. Taprogge et al., Phys. Rev. Lett. 112, 132501 (2014).
- 2) G. Simpson et al., Phys. Rev. Lett. 113, 132502 (2014).
- 3) P. Hoff et al., Phys. Rev. Lett. 77, 1020 (1996).
- J. M. Allmond *et al.*, Phys. Rev. Lett. **112**, 172701 (2014).
- 5) V. Vaquero et al., Phys. Rev. Lett. 118, 202505 (2017).
- 6) D. Rosiak et al., Phys. Rev. Lett. 121, 252501 (2018).
- 7) B. Fogelberg et al., Phys. Rev. Lett. 73, 2413 (1994).
- 8) K. Jones et al., Phys. Rev. C 84, 034601 (2011).

^{*1} LPSC, Grenoble

^{*&}lt;sup>2</sup> School of Engineering, University of the West of Scotland

^{*3} IEM, CSIC Madrid