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First spectroscopy of the near drip-line nucleus 40Mg†
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Magnesium isotopes offer an opportunity to ex-
perimentally study the transition from well-bound to
weakly-bound nuclei and its influence on the excited
states, which may reflect the correlations at the lim-
its of stability. While knowledge on the heaviest Mg
isotopes is limited, an overall consistent picture of the
structure along Z = 12 has emerged between N = 20
and N = 28, of persistent prolate deformation from
32Mg to 38Mg,1) which likely extends to 40Mg.2)

40Mg represents a particularly intriguing case for
study. Theoretical expectations and experimental sys-
tematics suggest 40Mg to be a well-deformed prolate
rotor as well, structurally very similar to 36, 38Mg. How-
ever, the occupation of the relatively weakly-bound
2p3/2 neutron orbital near the Fermi surface may add
a new degree of freedom. In this report, the first γ-
ray spectroscopic information of 40Mg is presented and
discussed in the context of the systematics along the
magnesium isotopes.

Experimentally, a drastically different prompt γ-ray
spectrum is observed for 40Mg (see Fig. 1 (c)) as com-
pared to 36, 38Mg (see Fig. 1 (a), (b)), contrary to expec-
tations. The tentatively assigned 2+1 →0+1 transition at
500(14) keV is 20% below that in 38Mg, a trend that is
outside the shell-model and other state-of-the-art theo-
retical predictions. The second γ-ray transition is even
more puzzling. Given that 40Mg is very near the neu-
tron dripline, and the low-ℓ ν2p3/2 orbital sits at the
Fermi surface, the observed spectrum may be an indi-
cation of the manifestation of weak-binding effects, as
discussed fully in the published Letter.

The experiment was carried out at the Radioactive
Isotope Beam Factory (RIBF) at RIKEN Nishina Cen-
ter. An intense (450 pnA) primary beam of 48Ca was
fragmented on a rotating production target, producing
a secondary cocktail beam centered on 41Al. This beam
was transported through BigRIPS3) and was incident
upon a thick polyethylene secondary target at the focal
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plane in front of ZeroDegree, which was tuned to cen-
ter 40Mg reaction residues. Prompt γ rays depopulating
the excited states in 40Mg and other reaction residues
were detected in the DALI2 spectrometer,5) which con-
sistisof 186 large-volume NaI(Tl) detectors surrounding
the secondary target.

Fig. 1. (color online) Prompt γ-ray spectrum associated
with (a) 36Mg, (b) 38Mg and (c) 40Mg (populated in −1p
removal from 41Al). Spectra were fit using the simulated
DALI2 response (red dashed curves) and a smooth back-
ground (dotted blue line); the solid black line represents
the total fit.
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